Significance of particle size on the improved performance of magnetorheological gels
Tài liệu tham khảo
Jolly, 1996, A model of the behaviour of magnetorheological materials, Smart Mater. Struct., 5, 607, 10.1088/0964-1726/5/5/009
Fuchs, 2004, Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels, J. Appl. Polymer Sci., 92, 1176, 10.1002/app.13434
Ginder, 2000, Controllable-stiffness components based on magnetorheological elastomers, vol. 3985, 418
Deng, 2008, Application of magnetorheological elastomer to vibration absorber, Commun. Nonlinear Sci. Numer. Simul., 13, 1938, 10.1016/j.cnsns.2007.03.024
Deng, 2006, Development of an adaptive tuned vibration absorber with magnetorheological elastomer, Smart materials and structures, 15, N111, 10.1088/0964-1726/15/5/N02
Eem, 2013, Seismic performance evaluation of an mr elastomer-based smart base isolation system using real-time hybrid simulation, Smart Mater. Struct., 22, 10.1088/0964-1726/22/5/055003
Hoang, 2010, An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction, Smart Mater. Struct., 20, 10.1088/0964-1726/20/1/015019
Tao, 2018, Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer, Mater. Des., 156, 528, 10.1016/j.matdes.2018.07.024
Fuchs, 2007, Development and characterization of magnetorheological elastomers, J. Appl. Polym. Sci., 105, 2497, 10.1002/app.24348
Gong, 2005, Fabrication and characterization of isotropic magnetorheological elastomers, Polym. Test., 24, 669, 10.1016/j.polymertesting.2005.03.015
Wang, 2007, Preparation and properties of magnetorheological elastomers based on silicon rubber/polystyrene blend matrix, J. Appl. Polymer Sci., 103, 3143, 10.1002/app.24598
Hu, 2005, New magnetorheological elastomers based on polyurethane/si-rubber hybrid, Polym. Test., 24, 324, 10.1016/j.polymertesting.2004.11.003
Demchuk, 2002, Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation, J. Eng. Phys. Thermophys., 75, 396, 10.1023/A:1015697723112
Chen, 2007, Investigation on magnetorheological elastomers based on natural rubber, J. Mater. Sci., 42, 5483, 10.1007/s10853-006-0975-x
Sun, 2008, Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber, Polym. Testing, 27, 520, 10.1016/j.polymertesting.2008.02.008
Agirre-Olabide, 2018, Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers, J. Magn. Magn. Mater., 446, 155, 10.1016/j.jmmm.2017.09.017
Rao, 2010, Functional behavior of isotropic magnetorheological gels, Smart Mater. Struct., 19
Terry V. Pearce. Jelly blocks and jelly letters, September 5 2006. US Patent 7,101,247.
Chertovich, 2010, New composite elastomers with giant magnetic response, Macromol. Mater. Eng., 295, 336, 10.1002/mame.200900301
Tian, 2018, Fabrication and characterisation of anisotropic magnetorheological elastomer with 45 iron particle alignment at various silicone oil concentrations, J. Intell. Mater. Syst. Struct., 29, 151, 10.1177/1045389X17704071
Bodnaruk, 2019, Magnetic anisotropy in magnetoactive elastomers, enabled by matrix elasticity, Polymer, 162, 63, 10.1016/j.polymer.2018.12.027
Carlson, 2000, Mr fluid, foam and elastomer devices, Mechatronics, 10, 555, 10.1016/S0957-4158(99)00064-1
Ginder, 1999, Magnetorheological elastomers: properties and applications, vol. 3675, 131
M. Behrooz, X. Wang, and F. Gordaninejad. Modeling of a new magnetorheological elastomer-based isolator, in: Active and Passive Smart Structures and Integrated Systems 2013, vol. 8688, page 86880Z. International Society for Optics and Photonics, 2013.
Stepanov, 2007, Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers, Polymer, 48, 488, 10.1016/j.polymer.2006.11.044
Winger, 2019, Influence of the particle size on the magnetorheological effect of magnetorheological elastomers, J. Magn. Magn. Mater., 10.1016/j.jmmm.2019.03.027
Yu, 2012, Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers, J. Magn. Magn. Mater., 324, 2147, 10.1016/j.jmmm.2012.02.033
Sorokin, 2017, Magnetorheological behavior of magnetoactive elastomers filled with bimodal iron and magnetite particles, Smart Mater. Struct., 26, 10.1088/1361-665X/26/3/035019
Zhang, 2018, Elegant surface of coni alloys toward efficient magnetorheological performances realized with carbon quantum dots, Adv. Mater. Interfaces, 5, 1800164, 10.1002/admi.201800164
Esmaeilnezhad, 2017, Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid, J. Magn. Magn. Mater., 444, 161, 10.1016/j.jmmm.2017.08.023
Leong, 2016, An overview of nanoparticles utilization in magnetorheological materials, 020002, 10.1063/1.4941463
Gnanaprakash, 2007, Effect of initial ph and temperature of iron salt solutions on formation of magnetite nanoparticles, Mater. Chem. Phys., 103, 168, 10.1016/j.matchemphys.2007.02.011
I. Szalai, S. Nagy, S. Dietrich. Magnetization and susceptibility of polydisperse ferrofluids. arXiv preprint arXiv:1307.4596, 2013.
D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, G. Heinrich. Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field. arXiv preprint arXiv:1210.1401, 2012.
Davis, 1999, Model of magnetorheological elastomers, J. Appl. Phys., 85, 3348, 10.1063/1.369682
Shiga, 1995, Magnetroviscoelastic behavior of composite gels, J. Appl. Polym. Sci., 58, 787, 10.1002/app.1995.070580411
Kasinathan, 2018, Magnetoelasticity of gels, J. Intell. Mater. Syst. Struct., 29, 1913, 10.1177/1045389X18754349