Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India
Tóm tắt
Từ khóa
Tài liệu tham khảo
APHA (1995). Standard methods for the examination of water and waste water. 19th ed, APHA, Washington D C, USASS
Aruga R, Gastaldi D, Negro G, Ostacoli G (1995). Pollution of a river basin and its evolution with time studied by multivariate statistical analysis. Anal Chim Acta, 310(1): 15–25
Ashley R P, Lloyd J W (1978). An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol (Amst), 39(3–4): 355–364
Barak P, Chen Y (1992). Equivalentradii of humic macro molecules from acid base titration. Soil Sci, 154(3): 184–195
Bartschat B M, Cabaniss S E, Morel F M M (1992). Oligo electrolyte model for cation binding by humic substances. Environ Sci Technol, 26(2): 284–294
Benedetti M F, van Riemsdijk W H, Koopal L K (1996). Humic substances considered as a heterogeneous Donnan gel phase. Environ Sci Technol, 30(6): 1805–1813
Brook G A (1983). A world model of soil carbon dioxide. Earth surface processes and landfoems, 8: 79–88
Charlet L, Wersin P, Srumm W (1990). Surface charge of MnCO3 and FeCO3. Geochim Cosmochim Acta, 54(8): 2329–2336
Chidambaram S, Prasanna M V, Ramanathan A L, Anandhan P, Srinivasamoorthy K, Loganathan D, Senthilkumar G (2006). Impact of Tsunami in coastal ground water- A case study from Portnova to Pumpuhar, Tamilnadu. An International Quarterly Journal of Environment and Social Sciences, 1(2): 73–78
Chidambaram S, Ramanathan A L, Prasanna M V, Loganathan D, Badrinarayanan T S, Srinivasamoorthy K, Anandhan P (2008). Study on the impact of tsunami on shallow ground water from portnova to pumpuhar, using geoelectrical technique-south east coast of India. Indian J Mar Sci, 37(20): 121–131
Chidambaram S, Senthil Kumar G, Prasanna M V, John Peter A, Ramanathan A L, Srinivasamoorthy K (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environ Geol, 57(1): 59–73
Chidambaram S, Vijayakumar V, Srinivasamoorthy K, Anandhan P, Prasanna M V, Vasudevan S (2007). A study on variation in ionic composition of aqueous system in different lithounits around Perambalur region, Tamil Nadu. J Geol Soc India, 70(6): 1061–1069
de Wit J C M, van Riemsdijk W H, Koopal L (1993). Proton binding to humic substances. 1. Electrostatic effects. Environ Sci Technol, 27(10): 2005–2014
de Wit J C M, van Riemsdijk W H, Nederlof L K, Kinniburgh D G, Koopal L K (1990). Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Analytica Chemica Acta, 198–207
Engebretson R R, Amos T, vonWandruszka R (1996). Quantitative approach to humic acid associations. Environ Sci Technol, 30(3): 990–997
Giammanco S, Ottaviani M, Valenza M, Veschetti E, Principio E, Giammanco G, Pignato S (1998). Major and trace elements geochemistry in the ground-waters of a volcanic area: Mount Etna (Sicily, Italy). Water Res, 32(1): 19–30
Herman J S, Back W, Pomar L (1985). Geochemistry of groundwater in the mixing zone along the east coast of Mallorca, Spain. Karst Water Resources (Proceedings of the Ankara - Antalya Symposium, July 1985), 161: 467–479
Holland H D (1978). The chemistry of the atmosphere and oceans. New York: Wiley Inter Sciences, 351
Kim J O, Mueller C W (1987). Introduction to Factor Analysis: What It is and How to Do It? Quantitative Applications in the Social Sciences Series. Newbury Park: Sage University Press
Korea Water Resources Cooperation (1993). Groundwater Resources of Korea-Preliminary Survey and Evaluation, KWRC-93-GR-1, KWRC, 342
Marinsky J A, Ephraim J (1986). Aunified physicochemical description of the proto nation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1.analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: fundamental concepts. Environ Sci Technol, 20(4): 349–354
Milne C J, Kinniburgh D, de Wit J C M, van Reimsdijk W H, Koopal K (1995). Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim Cosmochim Acta, 59(6): 1101–1112
Murphy E M, Zachara J M (1995). The role of Sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater. Geoderma, 67(1–2): 103–124
Plummer LN, Jones BF, Truesdell AH (1976). WATEQF — A Fortran IV Version OfWATEQ, A Computer Program For Calculating Chemical Equilibrium Of Natural Waters. US Geol Surv Water Resources Investigations Report, 76–13
Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess, 168(1–4): 63–90
Prasanna MV, Chidambaram S, Srinivasamoorthy K, Anandhan P, John P A (2006). A study on hydrogeochemistry along the ground water flow path in different litho units in Gadilam river basin, Tamilnadu (India). International journal of Chemical sciences, 2(2): 157–172
Raymahashay B C (1986). Geochemistry of bicarbonate in river water. J Geol Soc India, 27: 114–118
Stumm W, Morgan J J (1996). Aquatic Chemistry. New York: John Wiley and Sons Inc, 1022
Tipping E, Hurley M.A (1992). A unifying model of cation binding by humic substances. Geochim Cosmochim Acta, 56(10): 3627–3641
Toscani L, Venturelli G, Boschetti T (2001). Sulphide-bearing waters in Northern Apennines, Italy: general features and water rock interaction. Aquat Geochem, 7(3): 195–216