Signed $$\lambda $$λ-Measures on Effect Algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Elsevier, Upper Saddle River
Pap E (2002) Handbook of measure theory. Elsevier, North-Holland, Amsterdam
Sugeno M (1974) Theory of Fuzzy Integrals and Its Applications. Ph.D, Dis- sertation, Tokyo Institute of Technology
Riečanova Z, Zajac M, Pulmanova S (2011) Effect algebras of positive linear operators densly defined on Hilbert space. Rep Math Phys 68:261–270
Nguyen HT, Kreinovich V, Lorkowski J, Abu S (2015) Why Sugeno lambda- measures. Departmental Technical Reports (CS), Paper 906
Kôpka F, Chovaneć F (1992) D-posets of fuzzy sets. Tetra Mount Math Publ 1:83–87
Dvurečenskij A, Pulmannová S (2000) New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht
Beltrametti EG, Cassinelli G (1981) The logic of quantum mechanics. Addison-Wesley Publishing Company, Reading
Dvurečenskij A (2011) The lattice and simplex structure of states on pseudo effect algebras. Int J Theor Phys 50:2758–2775
Avallone A, Basile A (2003) On a Marinacci uniqueness theorem for mea- sures. J Math Anal Appl 286:378–390
Avallone A, Simone A De, Vitolo P (2006) Effect algebras and extensions of measures. Bullenttino U M I 9-B(8):423-444
Bennet MK, Foulis DJ, Greechie RJ (1994) Sums and products of interval algebras. Int J Theor Phys 33:2114–2136
Guintini R, Greuling R (1989) Towards a formal language for unsharp prop- erties. Found Phys 19:931–945
Khare M, Singh AK (2008) Atom and a Saks type decomposition in effect algebras. Demonstr Math 38(1):59–70
Khare M, Singh AK (2008) Atoms and Dobrakov submeasures in effect algebras. Fuzzy Sets Syst 159:1123–1128
Khare M, Singh AK (2008) Weakly tight functions, their Jordan type decom- position and total variation in effect algebras. J Math Anal Appl 344(1):535–545
Khare M, Singh AK (2008) Pseudo-atoms, atoms and a Jordan type decom- position in effect algebras. J Math Anal Appl 344(1):238–252
Chitesu I (2015) Why $$\lambda $$ λ -additive (fuzzy) measures? Kybernetika 51(2):246–254
Qiang Z, A class of nonadditive signed measures. preprint: 1-13