Signaling Pathways in Cancer and Embryonic Stem Cells

Springer Science and Business Media LLC - Tập 3 Số 1 - Trang 7-17 - 2007
Oliver Dreesen1, Ali H. Brivanlou
1Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10021-6399, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460.

Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 120, 513–522.

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., & Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature, 400, 464–468.

Gupta, G. P., & Massague, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.

Wang, T. L., Rago, C., Silliman, N., Ptak, J., Markowitz, S., Willson, J. K., et al. (2002). Prevalence of somatic alterations in the colorectal cancer cell genome. Proceedings of the National Academy of Sciences of the United States of America, 99, 3076–3080.

Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: lessons from leukemia. Trends in Cell Biology, 15, 494–501.

Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23, 7274–7282.

Tan, B. T., Park, C. Y., Ailles, L. E., & Weissman, I. L. (2006). The cancer stem cell hypothesis: A work in progress. Laboratory Investigation, 86, 1203–1207.

Brivanlou, A. H., & Darnell, J. E. Jr. (2002). Signal transduction and the control of gene expression. Science, 295, 813–818.

Darnell, J. E. Jr. (2002). Transcription factors as targets for cancer therapy. Nature Reviews. Cancer, 2, 740–749.

Darnell, J. E. (2005). Validating Stat3 in cancer therapy. Natural Medicines, 11, 595–596.

Bromberg, J. (2002). Stat proteins and oncogenesis. Journal of Clinical Investigation, 109, 1139–1142.

Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177–182.

Yarden, Y., & Ullrich, A. (1988). Growth factor receptor tyrosine kinases. Annual Review of Biochemistry, 57, 443–478.

Nichols, J., Chambers, I., Taga, T., & Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development, 128, 2333–2339.

Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Natural Medicines, 10, 55–63.

Noggle, S. A., James, D., & Brivanlou, A. H. (2005). A molecular basis for human embryonic stem cell pluripotency. Stem Cell Review, 1, 111–118.

Ehebauer, M., Hayward, P., & Arias, A. M. (2006). Notch, a universal arbiter of cell fate decisions. Science, 314, 1414–1415.

Weng, A. P., Ferrando, A. A., Lee, W., Morris, J. Pt., Silverman, L. B., Sanchez-Irizarrym C., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.

Roy, M., Pear, W. S., & Aster, J. C. (2007). The multifaceted role of Notch in cancer. Current Opinion in Genetics & Development, 17, 52–59.

Stylianou, S., Clarke, R. B., & Brennan, K. (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Research, 66, 1517–1525.

Noggle, S. A., Weiler, D., & Condie, B. G. (2006). Notch signaling is inactive but inducible in human embryonic stem cells. Stem Cells, 24, 1646–1653.

Lowell, S., Benchoua, A., Heavey, B., & Smith, A. G. (2006). Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol, 4, e121.

Katz, M., Amit, I., & Yarden, Y. (2007). Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochimica et Biophysica Acta.

Sebolt-Leopold, J. S., & Herrera, R. (2004). Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Reviews. Cancer, 4, 937–947.

Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., et al. (2006). The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 15, 1894–1913.

Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y., & Mills, G. B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature Reviews Drug Discovery, 4, 988–1004.

Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews. Cancer, 2, 489–501.

Takahashi, K., Murakami, M., & Yamanaka, S. (2005). Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochemical Society Transactions, 33, 1522–1525.

Paling, N. R., Wheadon, H., Bone, H. K., & Welham, M. J. (2004). Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. Journal of Biological Chemistry, 279, 48063–48070.

Courtois, G., & Gilmore, T. D. (2006). Mutations in the NF-kappaB signaling pathway: Implications for human disease. Oncogene, 25, 6831–6843.

Gilmore, T. D., Cormier, C., Jean-Jacques, J., & Gapuzan, M. E. (2001). Malignant transformation of primary chicken spleen cells by human transcription factor c-Rel. Oncogene, 20, 7098–7103.

Barth, T. F., Martin-Subero, J. I., Joos, S., Menz, C. K., Hasel, C., Mechtersheimer, G., et al. (2003). Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood, 101, 3681–3686.

Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.

Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422–426.

Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: Turning over new leaves. Cell, 128, 445–458.

Giles, R. H., van Es, J. H., & Clevers, H. (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochimica et Biophysica Acta, 1653, 1–24.

Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.

Jamieson, C. H., Ailles, L. E., Dylla, S. J., Muijtjens, M., Jones, C., Zehnder, J. L., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351, 657–667.

Besser, D. (2004). Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. Journal of Biological Chemistry, 279, 45076–45084.

Hansel, D. E., Kern, S. E., & Hruban, R. H. (2003). Molecular pathogenesis of pancreatic cancer. Annual Review of Genomics and Human Genetics, 4, 237–256.

Bardeesy, N., Cheng, K. H., Berger, J. H., Chu, G. C., Pahler, J., Olson, P., et al. (2006). Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes & Development, 20, 3130–3146.

Langenfeld, E. M., Calvano, S. E., Abou-Nukta, F., Lowry, S. F., Amenta, P., & Langenfeld, J. (2003). The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis, 24, 1445–1454.

Langenfeld, E. M., Kong, Y., & Langenfeld, J. (2006). Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5. Oncogene, 25, 685–692.

Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7, 131–142.

Hartwell, K. A., Muir, B., Reinhardt, F., Carpenter, A. E., Sgroi, D. C., & Weinberg, R. A. (2006). The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103, 18969–18974.

Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.

Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.

Sato, N., Sanjuan, I. M., Heke, M., Uchida, M., Naef, F., & Brivanlou, A. H. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Developments in Biologicals, 260, 404–413.

James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.

Xu, R. H., Chen, X., Li, D. S., Li, R., Addicks, G. C., Glennon, C., et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnology, 20, 1261–1264.

Goumans, M. J., & Mummery, C. (2000). Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. International Journal of Developmental Biology, 44, 253–265.

Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444, 761–765.