Signal transduction during cold stress in plants

Physiology and Molecular Biology of Plants - Tập 14 Số 1-2 - Trang 69-79 - 2008
Amolkumar U. Solanke1, Arun Kumar Sharma1
1Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110 021, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. and Zhu, J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem., 281: 37636–37645.

Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C. and de Mendoza, D. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J., 20: 1681–1691.

Beck, E.H., Fettig, S., Knake, C., Hartig, K. and Bhattarai, T. (2007). Specific and unspecific responses of plants to cold and drought stress. J. Biosci., 32: 501–510.

Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J. and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15: 1833–1845.

Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M. and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 17: 1043–1054.

Chinnusamy, V., Schumaker, K. and Zhu, J.K. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot., 55: 225–236.

Chinnusamy, V., Zhu, J. and Zhu, J.K. (2006). Gene regulation during cold acclimation in plants. Physiol. Plant., 126: 52–61.

Cook, D., Fowler, S., Fiehn, O. and Thomashow, M.F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA, 101: 15243–15248.

Davletova, S., Schlauch, K., Coutu, J. and Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol., 139: 847–856.

del Pozo, O., Pedley, K.F. and Martin, G.B. (2004). MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J., 23: 3072–3082.

Deswal, R., Chowdhary, G.K. and Sopory, S.K. (2004). Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea. Biochem. Biophys. Res. Commun., 322: 420–427.

Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W. and Munnik, T. (2003). Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15: 2666–2679.

Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J.K. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA, 103: 8281–8286.

Ensminger, I., Busch, F. and Huner, N.P.A. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol. Plant., 126: 28–44.

Evans, N.H., McAinsh, M.R. and Hetherington, A.M. (2001). Calcium oscillations in higher plants. Curr. Plant Biol., 4: 415–420.

Fey, V., Wagner, R., Brautigam, K. and Pfannschmidt, T. (2005). Photosynthetic redox control of nuclear gene expression. J. Exp. Bot., 56: 1491–1498.

Fowler, S. and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 14: 1675–1690.

Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J. and Marc, J. (2001). A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell, 13: 2143–2158.

Gilmour, S.J., Fowler, S.G. and Thomashow, M.F. (2004). Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol., 54: 767–781.

Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol., 124: 1854–1865.

Gray, G.R., Chauvin, L.P., Sarhan, F. and Huner, N. (1997). Cold acclimation and freezing tolerance (A complex interaction of light and temperature). Plant Physiol., 114: 467–474.

Gusta, L.V., Trischuk, R. and Weiser, C.J. (2005). Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul., 24: 308–318.

Guy, C.L. (1990). Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 187–223.

Henriksson, K.N. and Trewavas, A.J. (2003). The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell Environ., 26: 485–496.

Hong, S.W., Jon, J.H., Kwak, J.M. and Nam, H.G. (1997). Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol., 113: 1203–1212.

Huner, N.P.A., Oquist, G. and Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends Plant Sci., 3: 224–230.

Inaba, M., Suzuki, I., Szalontai, B., Kanesaki, Y., Los, D.A., Hayashi, H. and Murata, N. (2003). Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis. J. Biol. Chem., 278: 12191–12198.

Ishitani, M., Xiong, L., Stevenson, B. and Zhu, J.K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 9: 1935–1949.

Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280: 104–106.

Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T. and Thomashow, M.F. (2001). Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol., 127: 910–917.

Jin, H., Axtell, M.J., Dahlbeck, D., Ekwenna, O., Zhang, S., Staskawicz, B. and Baker, B. (2002). NPK1, an MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev. Cell, 3: 291–297.

Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA, 93: 11274–11279.

Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 15: 411–423.

Klimecka, M. and Muszynska, G. (2007). Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Pol., 54: 219–233.

Knight, H. and Knight, M.R. (2000). Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J. Exp. Bot., 51: 1679–1686.

Knight, H. and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci., 6: 262–267.

Knight, H., Trewavas, A.J. and Knight, M.R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 8: 489–503.

Knight, H., Veale, E.L., Warren, G.J. and Knight, M.R. (1999). The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 11: 875–886.

Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature, 352: 524–526.

Komatsu, S., Yang, G., Khan, M., Onodera, H., Toki, S. and Yamaguchi, M. (2007). Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol. Genet. Genomics, 277: 713–723.

Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA, 97: 2940–2945.

Kovtun, Y., Chiu, W.L., Zeng, W. and Sheen, J. (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 395: 716–720.

Kudla, J., Xu, Q., Harter, K., Gruissem, W. and Luan, S. (1999). Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA, 96: 4718–4723.

Lecourieux, D., Ranjeva, R. and Pugin, A. (2006). Calcium in plant defence-signalling pathways. New Phytol., 171: 249–269.

Lee, H., Xiong, L., Gong, Z., Ishitani, M., Stevenson, B. and Zhu, J.K. (2001). The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo—cytoplasmic partitioning. Genes Dev., 15: 912–924.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.

Los, D.A. and Murata, N. (2004). Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta., 1666: 142–157.

Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J., 38: 982–993.

Medina, J., Bargues, M., Terol, J., Perez-Alonso, M. and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol., 119: 463–470.

Mikami, K. and Murata, N. (2003). Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog. Lipid. Res., 42: 527–543.

Minorsky, P.V. (1989). Temperature sensing by plants: A review and hypothesis. Plant Cell Environ., 12: 119–135.

Minorsky, P.V. and Spanswick, R.M. (1989). Electrophysiological evidence for calcium in temperature sensing by roots of cucumber seedlings. Plant Cell Environ., 12: 137–143.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405–410.

Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9: 490–498.

Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T., Ashworth, E.N., Bressan, R.A., Yun, D.J. and Hasegawa, P.M. (2007). SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 19: 1403–1414.

Mizoguchi, T., Hayashida, N., Yamaguchi-Shinozaki, K., Kamada, H. and Shinozaki, K. (1995). Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett., 358: 199–204.

Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K. and Shinozaki, K. (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 93: 765–769.

Monroy, A.F., Castonguay, Y., Laberge, S., Sarhan, F., Vezina, L.P. and Dhindsa, R.S. (1993). A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature. Plant Physiol., 102: 873–879.

Monroy, A.F. and Dhindsa, R.S. (1995). Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell, 7: 321–331.

Monroy, A.F., Sangwan, V. and Dhindsa, R.S. (1998). Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J., 13: 653–660.

Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O. and Yun, D.J. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA, 100: 358–363.

Murata, N. and Los, D.A. (1997). Membrane Fluidity and Temperature Perception. Plant Physiol., 115: 875–879.

Nakagami, H., Pitzschke, A. and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci., 10: 339–346.

Novillo, F., Alonso, J.M., Ecker, J.R. and Salinas, J. (2004). CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101: 3985–3990.

Orvar, B.L., Sangwan, V., Omann, F. and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J., 23: 785–794.

Plieth, C. (2005). Calcium: Just another regulator in the machinery of life? Ann. Bot. (Lond.), 96: 1–8.

Plieth, C., Hansen, U.P., Knight, H. and Knight, M.R. (1999). Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J., 18: 491–497.

Prasad, T.K., Anderson, M.D., Martin, B.A. and Stewart, C.R. (1994). Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65–74.

Ray, S., Agarwal, P., Arora, R., Kapoor, S. and Tyagi, A.K. (2007). Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol. Genet. Genomics, (DOI 10.1007/s00438-007-0267-4)

Reddy, V.S. and Reddy, A.S. (2004). Proteomics of calcium-signaling components in plants. Phytochemistry, 65: 1745–1776.

Ruelland, E., Cantrel, C., Gawer, M., Kader, J.C. and Zachowski, A. (2002). Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol., 130: 999–1007.

Saijo, Y., Kinoshita, N., Ishiyama, K., Hata, S., Kyozuka, J., Hayakawa, T., Nakamura, T., Shimamoto, K., Yamaya, T. and Izui, K. (2001). A Ca2+-dependent protein kinase that endows rice plants with cold-and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol., 42: 1228–1233.

Salinas, J. (2002) Molecular mechanisms of signal transduction in cold acclimation. In: Plant Signal Transduction (Eds. Scheel D. and Wasternack C.) Oxford University Press, pp. 116–139.

Sangwan, V., Foulds, I., Singh, J. and Dhindsa, R.S. (2001). Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J., 27: 1–12.

Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H. and Dhindsa, R.S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J., 31: 629–638.

Sarhan, F. and Danyluk, J. (1998). Engineering cold-tolerant crops-throwing the master switch. Trends Plant Sci., 3: 289–290.

Sarhan, S., Hitchcock, J.M., Grauffel, C.A. and Wettstein, J.G. (1997). Comparative antipsychotic profiles of neurotensin and a related systemically active peptide agonist. Peptides, 18: 1223–1227.

Sathyanarayanan, P.V. and Poovaiah, B.W. (2004). Decoding Ca2+ signals in plants. CRC Crit. Rev. Plant Sci., 23: 1–11.

Sharma, P., Sharma, N. and Deswal, R. (2005). The molecular biology of the low-temperature response in plants. BioEssays, 27: 1048–1059.

Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol., 6: 410–417.

Shou, H., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J. and Wang, K. (2004a). Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc. Natl. Acad. Sci. USA, 101: 3298–3303.

Shou, H., Bordallo, P. and Wang, K. (2004b). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J. Exp. Bot., 55: 1013–1019.

Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.

Stockinger, E.J., Mao, Y., Regier, M.K., Triezenberg, S.J. and Thomashow, M.F. (2001). Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res., 29: 1524–1533.

Subbaiah, C.C., Bush, D.S. and Sachs, M.M. (1998). Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol., 118: 759–771.

Suzuki, I., Los, D.A. and Murata, N. (2000). Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem. Soc. Trans., 28: 628–630.

Suzuki, N. and Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Phisiol. Plant., 126: 45–51.

Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S. and Borg, M. (1997). The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 203: 442–447.

Thomashow, M.F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Physiol., 118: 1–7.

Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 571–599.

Uemura, M., Joseph, R.A. and Steponkus, P.L. (1995). Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol., 109: 15–30.

Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000a). Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Lett., 478: 227–232.

Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T. and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell, 11: 1743–1754.

Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000b). Two-component systems in plant signal transduction. Trends Plant Sci., 5: 67–74.

Van Buskirk, H.A. and Thomashow, M.F. (2006). Arabidopsis transcription factors regulating cold acclimation. Phisiol. Plant., 126: 72–80.

van der Luit, A.H., Olivari, C., Haley, A., Knight, M.R. and Trewavas, A.J. (1999). Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol., 121: 705–714.

Vaultier, M.N., Cantrel, C., Vergnolle, C., Justin, A.M., Demandre, C., Benhassaine-Kesri, G., Cicek, D., Zachowski, A. and Ruelland, E. (2006). Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett., 580: 4218–4223.

Vij, S. and Tyagi, A.K. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 5: 361–380.

Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G. and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J., 41: 195–211.

Wang, X., Li, W., Li, M. and Welti, R. (2006). Profiling lipid changes in plant response to low temperatures. Phisiol. Plant., 126: 90–96.

Widmann, C., Gibson, S., Jarpe, M.B. and Johnson, G.L. (1999). Mitogen-Activated Protein Kinase: Conservation of a three-kinase module from yeast to human. Phisiol. Review, 79: 143–180.

Xiang, Y., Huang, Y. and Xiong, L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol., 144: 1416–1428.

Xin, Z. and Browse, J. (1998). Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA, 95: 7799–7804.

Xin, Z., Mandaokar, A., Chen, J., Last, R.L. and Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J., 49: 786–799.

Xiong, L., Schumaker, K.S. and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14Suppl: S165–S183.

Yamaguchi-Shinozaki, K. and Shinozaki, K. (1993). Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet., 236: 331–340.

Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6: 251–264.

Yamaguchi-Shinozaki, K. and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci., 10: 88–94.

Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol., 57: 781–803.

Yang, T. and Poovaiah, B.W. (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci., 8: 505–512.

Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J. and Thomashow, M.F. (2004). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J., 39: 905–919.

Zhu, J., Dong, C.H. and Zhu, J.K. (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol., 10: 290–295.

Zhu, J., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa, P.M. and Bressan, R.A. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc. Natl. Acad. Sci. USA, 101: 9873–9878.

Zhu, J., Verslues, P.E., Zheng, X., Lee, B.H., Zhan, X., Manabe, Y., Sokolchik, I., Zhu, Y., Dong, C.H., Zhu, J.K., Hasegawa, P.M. and Bressan, R.A. (2005). HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA, 102: 9966–9971.

Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol., 4: 401–406.