Sign prediction in sparse social networks using clustering and collaborative filtering
Tóm tắt
Today, social networks have created a wide variety of relationships between users. Friendships on Facebook and trust in the Epinions network are examples of these relationships. Most social media research has often focused on positive interpersonal relationships, such as friendships. However, in many real-world applications, there are also networks of negative relationships whose communication between users is either distrustful or hostile in nature. Such networks are called signed networks. In this work, sign prediction is made based on existing links between nodes. However, in real signed networks, links between nodes are usually sparse and sometimes absent. Therefore, existing methods are not appropriate to address the challenges of accurate sign prediction. To address the sparsity problem, this work aims to propose a method to predict the sign of positive and negative links based on clustering and collaborative filtering methods. Network clustering is done in such a way that the number of negative links between the clusters and the number of positive links within the clusters are as large as possible. As a result, the clusters are as close as possible to social balance. The main contribution of this work is using clustering and collaborative filtering methods, as well as proposing a new similarity criterion, to overcome the data sparseness problem and predict the unknown sign of links. Evaluations on the Epinions network have shown that the prediction accuracy of the proposed method has improved by 8% compared to previous studies.