Sign-Coherence of C-Vectors and Maximal Green Sequences for Acyclic Sign-Skew-Symmetric Matrices
Tóm tắt
In this paper we construct an unfolding for c −vectors of acyclic sign-skew symmetric matrices and we also prove that the sign-coherence property holds for acyclic sign-skew-symmetric matrices. Then we prove that every acyclic sign-skew-symmetric matrix admits a maximal green sequence.
Tài liệu tham khảo
Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: Upper bound and Bruhat cells. Duke Math. J. 126, 1–52 (2005)
Brustle, T., Dupton, G., Perotin, M.: On Maximal Green Sequences. Int. Math. Res. Not. 16, 4547–4586 (2014)
Cao, P., Li, F.: Uniformly column sign-coherence and the existence of maximal green sequences. J. Algebraic Comb. 50, 403–417 (2019)
Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: Applications to cluster algebras. J. Amer. Math. Soc. 23, 749–790 (2010)
Dupton, G.: An approach to non-simply-laced cluster algebra. J. Algebra 320(4), 1626–1661 (2008)
Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Amer. Math. Soc. 31, 497–608 (2018)
Huang, M., Li, F.: Unfolding of sign-skew-symmetric cluster algebras and its applications to positivity and F-polynomials. Adv. Math. 340, 221–283 (2018)
Mills, M.: Maximal green sequences for quivers of finite mutation type. Adv. Math. 319, 182–210 (2017)
Muller, G.: The existence of maximal green sequence is not invariat under quiver mutation. Electron. J. Comb. 23, 2 (2016). Paper 2.47, 23pp
Nakanishi, T., Stella, S.: Diagrammatic description of c-vectors and d-vectors of cluster algebra of finite type. Electron. J. Comb. 21, 1 (2014). Paper 1.3, 107pp
Seven, A.: Maximal green sequences of skew-symmetrizable 3 × 3 matrices. Linear Algebra Appl. 440, 125–130 (2014)