Sieve bootstrap for smoothing in nonstationary time series

Annals of Statistics - Tập 26 Số 1 - 1998
Peter Bühlmann

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristics. Springer, New York.

An, H. Z., Chen, Z.-G. and Hannan, E. J. (1982). Autocorrelation, autoregression and autoregressive approximation. Ann. Statist. 10 926-936. (Correction: Ann. Statist. 11 1018.)

Bickel, P. J. and B ¨uhlmann, P. (1995). Mixing property and functional central limit theorems for a sieve bootstrap in time series. Technical Report 440, Dept. Statistics, Univ. California, Berkeley.

Bose, A. (1988). Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16 1709- 1722.

Brillinger, D. R. (1988). An elementary trend analysis of Rio Negro levels at Manaus, 1903- 1985. Revista Brasileira de Probabilidade e Estat´istica 2 63-79.

Brillinger, D. R. (1996). Some uses of cumulants in wavelet analysis. J. Nonparametr. Statist. 6 93-114.

Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods. Springer, New York.

B ¨uhlmann, P. (1995). Moving-average representation for autoregressive approximations. Stochastic Process. Appl. 60 331-342.

B ¨uhlmann, P. (1997). Sieve bootstrap for time series. Bernoulli 3 123-148.

Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. J. Amer. Statist. Assoc. 88 1287-1301.

Freedman, D. (1984). On bootstrapping two-stage least-squares estimates in stationary linear models. Ann. Statist. 12 827-842.

Gasser, T. and M ¨uller, H.-G. (1979). Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.). Springer, Berlin.

Hall, P. (1992). On bootstrap confidence intervals in nonparametric regression. Ann. Statist. 20 695-711.

Hannan, E. J. and Kavalieris, L. (1986). Regression, autoregression models. J. Time Series Anal. 7 27-49.

H¨ardle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: local adaptive smoothing and confidence bands. J. Amer. Statist. Assoc. 83 102-110.

H¨ardle, W. and Tuan, P.-D. (1986). Some theory of M-smoothing of time series. J. Time Series Anal. 7 191-204.

Hart, J. D. (1991). Kernel regression estimation with time series errors. J. Roy. Statist. Soc. Ser. B 53 173-187.

Hart, J. D. (1994). Automated kernel smoothing of dependent data using time series crossvalidation. J. Roy. Statist. Soc. Ser. B 56 529-542.

Kreiss, J.-P. (1988). Asy mptotic statistical inference for a class of stochastic processes. Habilitationsschrift, Fachbereich Mathematik, Univ. Hamburg.

Nadaray a, E. A. (1964). On estimating regression. Theory Probab. Appl. 10 186-190.

Shibata, R. (1980). Asy mptotically efficient selection of the order of the model for estimating parameters of a linear process. Ann. Statist. 8 147-164. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V.,

Giroud, M. and Schill, H. (1997). Total ozone series at Arosa (Switzerland): homogenization and data comparison. Journal of Geophy ical Research. To appear.

Staehelin, J., Kegel, R. and Harris, N. R. P. (1997). Trend analysis of the homogenised total ozone series of Arosa (Switzerland), 1926-1996. Journal of Geophysical Research. To appear.

Subba Rao, T. and Gabr, M. M. (1980). A test for linearity of stationary time series. J. Time Series Anal. 1 145-158.

Truong, Y. K. (1991). Nonparametric curve estimation with time series errors. J. Statist. Plann. Inference 28 167-183.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

K ¨unsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1241.

BICKEL, P. J. and ROSENBLATT, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071-1095.

Watson, G. S. (1964). Smooth regression analysis. Sankhy¯a Ser. A 26 359-372.

Fan, J. (1993). Local linear smoothers and their minimax efficiency. Ann. Statist. 21 196-216.

Altman, N. S. (1990). Kernel smoothing of data with correlated errors. J. Amer. Statist. Assoc. 85 749-759.

Gasser, T. and M ¨uller, H.-G. (1984). Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 171-185.

Gasser, T., M ¨uller, H.-G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. J. Roy. Statist. Soc. Ser. B 47 238-252.

Hall, P. and Hart, J. D. (1990). Nonparametric regression with long-range dependence. Stochastic Process. Appl. 36 339-351.

H¨ardle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist. 19 778-796.

Herrmann, E., Gasser, T. and Kneip, A. (1992). Choice of bandwidth for kernel regression when residuals are correlated. Biometrika 79 783-795.