Si–Ge–Sn alloys: From growth to applications
Tài liệu tham khảo
Visual Networking Index (VNI) 2012-2017
Fang, 2006, Electrically pumped hybrid AlGaInAs-silicon evanescent laser, Opt. Express, 14, 9203, 10.1364/OE.14.009203
Roelkens, 2010, III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser Photon. Rev, 4, 751, 10.1002/lpor.200900033
Duan, 2014, Hybrid III–V on silicon lasers for photonic integrated circuits on silicon, IEEE J. Sel. Top. Quantum Electron, 20, 158, 10.1109/JSTQE.2013.2296752
Liu, 2011, Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate, Nat. Photonics, 5, 416, 10.1038/nphoton.2011.120
Chen, 2011, Nanolasers grown on silicon, Nat. Photonics, 5, 170, 10.1038/nphoton.2010.315
Rong, 2005, A continuous-wave Raman silicon laser, Nature, 433, 725, 10.1038/nature03346
Boyraz, 2004, Demonstration of a silicon Raman laser, Opt. Express, 12, 5269, 10.1364/OPEX.12.005269
Boyraz, 2005, Demonstration of directly modulated silicon Raman laser, Opt. Express, 13, 796, 10.1364/OPEX.13.000796
Rong, 2005, An all-silicon Raman laser, Nature, 433, 292, 10.1038/nature03273
Pillarisetty, 2011, Academic and industry research progress in germanium nanodevices, Nature, 479, 324, 10.1038/nature10678
Brunco, 2008, Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance, J. Electrochem. Soc, 155, H552, 10.1149/1.2919115
Hashemi, 2012, Ultrathin strained-Ge channel P-MOSFETs with high-k/metal gate and sub-1-nm equivalent oxide thickness, IEEE Electron Device Lett, 33, 943, 10.1109/LED.2012.2195631
Krishnamohan, 2006, High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments, IEEE Trans. Electron Devices, 53, 990, 10.1109/TED.2006.872362
Saraswat, 2005, Ge based high performance nanoscale MOSFETs, Microelectron Eng, 80, 15, 10.1016/j.mee.2005.04.038
del Alamo, 2011, Nanometre-scale electronics with III–V compound semiconductors, Nature, 479, 317, 10.1038/nature10677
Fischetti, 1996, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys, J. Appl. Phys, 80, 2234, 10.1063/1.363052
Antoniadis, 2008, 1
Sau, 2007, Possibility of increased mobility in Ge-Sn alloy system, Phys. Rev. B, 75, 1, 10.1103/PhysRevB.75.045208
Lu Low, 2012, Electronic band structure and effective mass parameters of Ge1-xSnx alloys, J. Appl. Phys, 112, 103715, 10.1063/1.4767381
Gupta, 2013, Achieving direct band gap in germanium through integration of Sn alloying and external strain, J. Appl. Phys, 113, 073707, 10.1063/1.4792649
Tonkikh, 2013, Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing, Appl. Phys. Lett, 103, 032106, 10.1063/1.4813913
Dutt, 2013, Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser, IEEE J. Sel. Top. Quantum Electron, 19, 1502706, 10.1109/JSTQE.2013.2241397
Kotlyar, 2013, Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors, Appl. Phys. Lett, 102, 113106, 10.1063/1.4798283
Ionescu, 2011, Tunnel field-effect transistors as energy-efficient electronic switches, Nature, 479, 329, 10.1038/nature10679
Knoch, 2005, 153
Kao, 2012, Direct and indirect band-to-band tunneling in germanium-based TFETs, IEEE Trans. Electron Devices, 59, 292, 10.1109/TED.2011.2175228
Schulte-Braucks, 2015, Negative differential resistance in direct bandgap GeSn p-i-n structures, Appl. Phys. Lett, 107, 042101, 10.1063/1.4927622
Xia, 2007, Ultracompact optical buffers on a silicon chip, Nat. Photonics, 1, 65, 10.1038/nphoton.2006.42
Assefa, 2010, Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects, Nature, 464, 80, 10.1038/nature08813
Xu, 2005, Micrometre-scale silicon electro-optic modulator, Nature, 435, 325, 10.1038/nature03569
Homewood, 2015, The rise of the GeSn laser, Nat. Photonics, 9, 78, 10.1038/nphoton.2015.1
Stöhr, 1939, Über Zweistoffsysteme mit Germanium, I., Zeitschrift Fur Anorg. Und Allg. Chemie, 241, 305, 10.1002/zaac.19392410401
Höchst, 1983, Angular resolved photoemission of InSb(001) and heteroepitaxial films of α-Sn(001), Surf. Sci, 126, 25, 10.1016/0039-6028(83)90691-X
Ansari, 2012, A proposed confinement modulated gap nanowire transistor based on a metal (tin), Nano Lett, 12, 2222, 10.1021/nl2040817
Farrow, 1981, The growth of metastable, heteroepitaxial films of α-Sn by metal beam epitaxy, J. Cryst. Growth, 54, 507, 10.1016/0022-0248(81)90506-6
Groves, 1963, Band structure of gray tin, Phys. Rev. Lett, 11, 194, 10.1103/PhysRevLett.11.194
Moontragoon, 2007, Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials, Semicond. Sci. Technol, 22, 742, 10.1088/0268-1242/22/7/012
Li, 2008, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 319, 1229, 10.1126/science.1150878
Moontragoon, 2012, The direct and indirect bandgaps of unstrained SixGe1-x-ySny and their photonic device applications, J. Appl. Phys, 112, 073106, 10.1063/1.4757414
Wirths, 2015, Lasing in direct-bandgap GeSn alloy grown on Si, Nat. Photonics, 9, 88, 10.1038/nphoton.2014.321
Du, 2014, Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx, Appl. Phys. Lett, 105, 051104, 10.1063/1.4892302
Senaratne, 2014, Advances in light emission from group-IV alloys via lattice engineering and n-type doping based on custom-designed chemistries, Chem. Mater, 26, 6033, 10.1021/cm502988y
Virgilio, 2013, Radiative recombination and optical gain spectra in biaxially strained n-type germanium, Phys. Rev. B, 87, 235313, 10.1103/PhysRevB.87.235313
El Kurdi, 2010, Band structure and optical gain of tensile-strained germanium based on a 30 band k.p formalism, J. Appl. Phys, 107, 013710, 10.1063/1.3279307
Takeuchi, 2007, Growth and structure evaluation of strain-relaxed Ge1-xSnx buffer layers grown on various types of substrates, Semicond. Sci. Technol, 22, S231, 10.1088/0268-1242/22/1/S54
Wirths, 2013, Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors, Appl. Phys. Lett, 102, 192103, 10.1063/1.4805034
Takeuchi, 2008, Growth of highly strain-relaxed Ge1-xSnx/virtual Ge by a Sn precipitation controlled compositionally step-graded method, Appl. Phys. Lett, 92, 231916, 10.1063/1.2945629
Takeuchi, 2008, Tensile strained Ge layers on strain-relaxed Ge1-xSnx/virtual Ge substrates, Thin Solid Films, 517, 159, 10.1016/j.tsf.2008.08.068
Jenkins, 1987, Electronic properties of metastable GexSn1-x alloys, Phys. Rev. B, 36, 7994, 10.1103/PhysRevB.36.7994
Yin, 2008, Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys, Phys. Rev. B, 78, 161203, 10.1103/PhysRevB.78.161203
He, 1997, Interband transitions in SnxGe1-x Alloys, Phys. Rev. Lett, 79, 1937, 10.1103/PhysRevLett.79.1937
Bauer, 2003, Tunable band structure in diamond-cubic tin-germanium alloys grown on silicon substrates, Solid State Commun, 127, 355, 10.1016/S0038-1098(03)00446-0
Bauer, 2002, Ge-Sn semiconductors for band-gap and lattice engineering, Appl. Phys. Lett, 81, 2992, 10.1063/1.1515133
D'Costa, 2006, Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-x/Six study, Phys. Rev. B, 73, 125207, 10.1103/PhysRevB.73.125207
Lin, 2012, Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy, Appl. Phys. Lett, 100, 102109, 10.1063/1.3692735
Mathews, 2010, Direct-gap photoluminescence with tunable emission wavelength in Ge1-ySny alloys on silicon, Appl. Phys. Lett, 97, 221912, 10.1063/1.3521391
Grzybowski, 2012, Next generation of Ge1-ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: reaction kinetics and tunable emission, Appl. Phys. Lett, 101, 072105, 10.1063/1.4745770
Chen, 2011, Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy, Appl. Phys. Lett, 99, 181125, 10.1063/1.3658632
Van Vechten, 1970, New set of tetrahedral covalent radii, Phys. Rev. B, 2, 2160, 10.1103/PhysRevB.2.2160
Olesinski, 1984, The Ge-Sn (germanium-tin) system, Bull. Alloy Phase Diagrams, 5, 265, 10.1007/BF02868550
Fleurial, 1990, Si-Ge-Metal ternary phase diagram calculations, J. Electrochem. Soc, 137, 2928, 10.1149/1.2087101
Wirths, 2013, Reduced pressure CVD growth of Ge and Ge1-xSnx alloys, ECS J. Solid State Sci. Technol, 2, N99, 10.1149/2.006305jss
Bratland, 2005, Sn-mediated Ge/Ge(001) growth by low-temperature molecular-beam epitaxy: surface smoothening and enhanced epitaxial thickness, J. Appl. Phys, 97, 044904, 10.1063/1.1848188
Kasper, 2013, Germanium tin: silicon photonics toward the mid-infrared [Invited], Photonics Res, 1, 69, 10.1364/PRJ.1.000069
Kasper, 2012, Growth of silicon based germanium tin alloys, Thin Solid Films, 520, 3195, 10.1016/j.tsf.2011.10.114
Kuech, 2013, Mixed semiconductor alloys for optical devices, Annu. Rev. Chem. Biomol. Eng, 4, 187, 10.1146/annurev-chembioeng-061312-103359
Fitzgerald, 1991, Totally relaxed GexSi1-x layers with low threading dislocation densities grown on Si substrates, Appl. Phys. Lett, 59, 811, 10.1063/1.105351
Loo, 2009, Epitaxial Ge on standard STI patterned Si wafers: high quality virtual substrates for Ge pMOS and III/V nMOS, ECS Trans, 25, 335, 10.1149/1.3203971
Wang, 2008, Selective epitaxial growth of germanium on Si wafers with shallow trench isolation: an approach for Ge virtual substrates, ECS Trans, 829, 10.1149/1.2986842
Colace, 1998, Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si, Appl. Phys. Lett, 72, 3175, 10.1063/1.121584
Hartmann, 2004, Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3-1.55-µm photodetection, J. Appl. Phys, 95, 5905, 10.1063/1.1699524
Shah, 2011, High quality relaxed Ge layers grown directly on a Si(001) substrate, Solid. State. Electron, 62, 189, 10.1016/j.sse.2011.03.005
Stringfellow, 1999
Herman, 2013
Mitin, 2008
Gencarelli, 2015
Frank, 1949, One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth, Proc. R. Soc. A Math. Phys. Eng. Sci, 198, 216
Volmer, 1926, Keimbildung in übersättigten Gebilden, Zeitschrift Für Phys. Chemie, 119, 277, 10.1515/zpch-1926-11927
Staranski, 1938, vol. 146, 797
Thurmond, 1956, Germanium solidus curves, J. Chem. Phys, 25, 799, 10.1063/1.1743083
Trumbore, 1956, Solid solubilities and electrical properties of tin in germanium single crystals, J. Electrochem. Soc, 103, 597, 10.1149/1.2430167
Busch, 1950, Versuche zur messung der elektrischen Leitfähigkeit des grauen Zinns, Helv. Phys. Acta, 23, 528
Ewald, 1958, Gray tin single crystals, J. Appl. Phys, 29, 1007, 10.1063/1.1723351
Ewald, 1959, Electronic properties of gray tin single crystals, J. Phys. Chem. Solids, 8, 523, 10.1016/0022-3697(59)90408-1
Goodman, 1982, Direct-gap group IV semiconductors based on tin, IEE Proc. I Solid State Electron Devices, 129, 189, 10.1049/ip-i-1.1982.0043
Fitzgerald, 1991, Epitaxially stabilized GexSn1-x diamond cubic alloys, J. Electron. Mater, 20, 489, 10.1007/BF02657831
Wegscheider, 1992, Fabrication and properties of epitaxially stabilized Ge / α-Sn heterostructures on Ge(001), J. Cryst. Growth, 123, 75, 10.1016/0022-0248(92)90012-8
Asom, 1989, Epitaxial growth of metastable SnGe alloys, Appl. Phys. Lett, 55, 578, 10.1063/1.101838
Piao, 1990, Molecular-beam epitaxial growth of metastable Ge1-xSnx alloys, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, 8, 221, 10.1116/1.584814
Pukite, 1989, Molecular beam epitaxy of metastable, diamond structure SnxGe1-x alloys, Appl. Phys. Lett, 54, 2142, 10.1063/1.101152
Höchst, 1989, Angle-resolved photoemission study of thin molecular-beam-epitaxy-grown α-Sn1-xGex films with x~0.5, Phys. Rev. B, 40, 9703, 10.1103/PhysRevB.40.9703
Rojas-López, 1998, Raman scattering from fully strained Ge1-xSnx (x ⩽ 0.22) alloys grown on Ge(001)2×1 by low-temperature molecular beam epitaxy, J. Appl. Phys, 84, 2219, 10.1063/1.368286
Oehme, 2013, Epitaxial growth of highly compressively strained GeSn alloys up to 12.5% Sn, J. Cryst. Growth, 384, 71, 10.1016/j.jcrysgro.2013.09.018
He, 1995, Synthesis of epitaxial SnxGe1-x alloy films by ion-assisted molecular beam epitaxy, Nucl. Instruments Methods Phys. Res. Sect. B., 106, 126, 10.1016/0168-583X(95)00690-7
He, 1996, Synthesis of epitaxial SnxGe1-x alloy films by ion-assisted molecular beam epitaxy, Appl. Phys. Lett, 68, 664, 10.1063/1.116502
Oguz, 1983, Synthesis of metastable, semiconducting Ge-Sn alloys by pulsed UV laser crystallization, Appl. Phys. Lett, 43, 848, 10.1063/1.94524
Lieten, 2013, Tensile strained GeSn on Si by solid phase epitaxy, Appl. Phys. Lett, 102, 052106, 10.1063/1.4790302
Lee, 1994, Microstructural stability of metastable amorphous and crystalline Ge1-xSnx alloys, J. Appl. Phys, 75, 1987, 10.1063/1.356323
Taylor, 1996, Solid phase epitaxy of diamond cubic SnxGe1-x alloys, J. Appl. Phys, 80, 96, 10.1063/1.363397
Shah, 1987, Growth of single-crystal metastable Ge1-xSnx alloys on Ge(100) and GaAs(100) substrates, J. Cryst. Growth, 83, 3, 10.1016/0022-0248(87)90495-7
Maruyama, 1998, Thin films of amorphous germanium-tin alloys prepared by radio-frequency magnetron sputtering, J. Electrochem. Soc, 145, 1303, 10.1149/1.1838455
Taylor, 1995, Inhibited Sn surface segregation in epitaxial SnxGe1-x alloy films grown by pulsed laser deposition, MRS Proc, 388, 10.1557/PROC-388-97
Bauer, 2003, Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1-x buffer layers, Appl. Phys. Lett, 83, 2163, 10.1063/1.1606104
Tolle
Kouvetakis, 2006, Tin-based group IV semiconductors: new platforms for opto- and microelectronics on silicon, Annu. Rev. Mater. Res, 36, 497, 10.1146/annurev.matsci.36.090804.095159
Gallagher, 2013, Fundamental band gap and direct-indirect crossover in Ge1-x-ySixSny alloys, Appl. Phys. Lett, 103, 202104, 10.1063/1.4829621
Vincent, 2011, Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition, Appl. Phys. Lett, 99, 152103, 10.1063/1.3645620
Gencarelli, 2012, Low-temperature Ge and GeSn chemical vapor deposition using Ge2H6, Thin Solid Films, 520, 3211, 10.1016/j.tsf.2011.10.119
Gencarelli, 2013, Crystalline properties and strain relaxation mechanism of CVD grown GeSn, ECS J. Solid State Sci. Technol, 2, P134, 10.1149/2.011304jss
Radamson, 2012, Strain engineering in GeSnSi materials, Meet. Abstr, 50, 527
Wirths, 2013, SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications, Thin Solid Films, 4–8
von den Driesch, 2015, Direct bandgap group IV epitaxy on Si for laser applications, Chem. Mater, 10.1021/acs.chemmater.5b01327
Chen, 2013, Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing, J. Cryst. Growth, 365, 29, 10.1016/j.jcrysgro.2012.12.014
Gossmann, 1990, Determination of critical layer thicknesses in IV-IV-alloy systems using reflection high energy electron diffraction intensity oscillations: Ge(100)/GexSn1-x, J. Appl. Phys, 68, 2791, 10.1063/1.346456
Harwit, 1990, Properties of diamond structure SnGe films grown by molecular beam epitaxy, Thin Solid Films, 184, 395, 10.1016/0040-6090(90)90437-I
Wirths, 2013, Epitaxial growth of Ge1-xSnx by reduced pressure CVD using SnCl4 and Ge2H6, ECS Trans, 50, 885, 10.1149/05009.0885ecst
Ramana Murty, 1994, Crystal-state amorphous-state transition in low-temperature silicon homoepitaxy, Phys. Rev. B, 49, 8483, 10.1103/PhysRevB.49.8483
Eaglesham, 1990, Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100), Phys. Rev. Lett, 65, 1227, 10.1103/PhysRevLett.65.1227
Ragan, 2000, Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge(001) heterostructures, Appl. Phys. Lett, 77, 3418, 10.1063/1.1328097
Gurdal, 1998, Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1-xSnx (x≤0.26) alloys on Ge(001)2x1, J. Appl. Phys, 83, 162, 10.1063/1.366690
Taraci, 2001, Simple chemical routes to diamond-cubic germanium-tin alloys, Appl. Phys. Lett, 78, 3607, 10.1063/1.1376156
Taraci
Soref, 2007, Advances in SiGeSn technology, J. Mater. Res, 22, 3281, 10.1557/JMR.2007.0415
Mathews, 2010, Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon, ECS Trans, 33, 765, 10.1149/1.3487607
Roucka, 2011, Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes, Appl. Phys. Lett, 98, 061109, 10.1063/1.3554747
Beeler, 2011, Synthesis and materials properties of Sn/P-Doped Ge on Si(100): photoluminescence and prototype devices, Chem. Mater, 23, 4480, 10.1021/cm201648x
Oehme, 2011, Room-temperature electroluminescence from GeSn light-emitting pin diodes on Si, IEEE Photonics Technol. Lett, 23, 1751, 10.1109/LPT.2011.2169052
Gassenq, 2012, GeSn/Ge heterostructure short-wave infrared photodetectors on silicon, Opt. Express, 20, 27297, 10.1364/OE.20.027297
Beeler, 2012, Compositional dependence of the absorption edge and dark currents in Ge1-x-ySixSny/Ge(100) photodetectors grown via ultra-low-temperature epitaxy of Ge4H10, Si4H10, and SnD4, Appl. Phys. Lett, 101, 221111, 10.1063/1.4768217
Mathews, 2009, Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications, Appl. Phys. Lett, 95, 133506, 10.1063/1.3238327
Gupta, 2012, 16.2.1
Zaima, 2015, Growth and applications of GeSn-related group-IV semiconductor materials, Sci. Technol. Adv. Mater, 16, 043502, 10.1088/1468-6996/16/4/043502
Sturm, 2008, Chemical vapor deposition epitaxy of silicon-based materials using neopentasilane, ECS Trans, 799, 10.1149/1.2986839
Xu, 2012, Molecular synthesis of high-performance near-ir photodetectors with independently tunable structural and optical properties based on Si-Ge-Sn, J. Am. Chem. Soc, 134, 20756, 10.1021/ja309894c
Margetis, 2014, 1830
2008
Roucka, 2005, Versatile buffer layer architectures based on Ge1-xSnx alloys, Appl. Phys. Lett, 86, 191912, 10.1063/1.1922078
Fang, 2007, Perfectly tetragonal, tensile-strained Ge on Ge1-ySny buffered Si(100), Appl. Phys. Lett, 90, 061915, 10.1063/1.2472273
Tolle, 2006, Low temperature chemical vapor deposition of Si-based compounds via SiH3SiH2SiH3: metastable SiSn/GeSn/Si(100) heteroepitaxial structures, Appl. Phys. Lett, 89, 231924, 10.1063/1.2403903
Xu, 2013, New strategies for Ge-on-Si materials and devices using non-conventional hydride chemistries: the tetragermane case, Semicond. Sci. Technol, 28, 105001, 10.1088/0268-1242/28/10/105001
Gallagher, 2014, Compositional dependence of the bowing parameter for the direct and indirect band gaps in Ge1-ySny alloys, Appl. Phys. Lett, 142102
Beeler, 2011, Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system, Phys. Rev. B, 84, 035204, 10.1103/PhysRevB.84.035204
Fang, 2008, Molecular-based synthetic approach to new group IV materials for high-efficiency, low-cost solar cells and Si-based optoelectronics, J. Am. Chem. Soc, 130, 16095, 10.1021/ja806636c
Xie, 2009, Direct integration of active Ge1-x(Si4Sn)x semiconductors on Si(100), Appl. Phys. Lett, 95, 181909, 10.1063/1.3242002
Xie, 2010, Synthesis, stability range, and fundamental properties of Si-Ge-Sn semiconductors grown directly on Si(100) and Ge(100) platforms, Chem. Mater, 22, 3779, 10.1021/cm100915q
D'Costa, 2009, Tunable optical gap at a fixed lattice constant in group-IV semiconductor alloys, Phys. Rev. Lett, 102, 107403, 10.1103/PhysRevLett.102.107403
D'Costa, 2010, Ternary GeSiSn alloys: new opportunities for strain and band gap engineering using group-IV semiconductors, Thin Solid Films, 518, 2531, 10.1016/j.tsf.2009.09.149
Jiang, 2014, Development of light emitting group IV ternary alloys on Si platforms for long wavelength optoelectronic applications, Chem. Mater, 26, 2522, 10.1021/cm403801b
Tolle, 2006, Compliant tin-based buffers for the growth of defect-free strained heterostructures on silicon, Appl. Phys. Lett, 88, 252112, 10.1063/1.2213014
Aella, 2004, Optical and structural properties of SixSnyGe1-x-y alloys, Appl. Phys. Lett, 84, 888, 10.1063/1.1645324
Fang, 2009, Practical B and P doping via SixSnyGe1-x-y-zMz quaternaries lattice matched to Ge: structural, electrical, and strain behavior, Appl. Phys. Lett, 95, 081113, 10.1063/1.3204456
Gencarelli, 2015, Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition, Thin Solid Films, 590, 163, 10.1016/j.tsf.2015.07.076
Gencarelli, 2015, Extended X-ray absorption fine structure investigation of Sn local environment in strained and relaxed epitaxial Ge1-xSnx films, J. Appl. Phys, 117, 095702, 10.1063/1.4913856
Chen, 2014, Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro-and nanophotonics, Nano Lett, 14, 37, 10.1021/nl402815v
Mosleh, 2014, Material characterization of Ge1-xSnx alloys grown by a commercial CVD system for optoelectronic device applications, J. Electron. Mater, 43, 938, 10.1007/s11664-014-3089-2
Mosleh, 2014, Investigation on the formation and propagation of defects in GeSn thin films, ECS Trans. Cancun, Mexique, 64, 895, 10.1149/06406.0895ecst
Wirths, 2013, Tensely strained GeSn alloys as optical gain media, Appl. Phys. Lett, 103, 192110, 10.1063/1.4829360
Wirths, 2014, Growth studies of doped SiGeSn/strained Ge(Sn) heterostructures, ECS Trans, 64, 689, 10.1149/06406.0689ecst
Taraci, 2001, Synthesis of silicon-based infrared semiconductors in the Ge-Sn system using molecular chemistry methods, J. Am. Chem. Soc, 123, 10980, 10.1021/ja0115058
Bauer, 2003, SnGe superstructure materials for Si-based infrared optoelectronics, Appl. Phys. Lett, 83, 3489, 10.1063/1.1622435
Hartmann, 2009, Epitaxial growth of Ge thick layers on nominal and 6° off Si(001); Ge surface passivation by Si, Semicond. Sci. Technol, 24, 055002, 10.1088/0268-1242/24/5/055002
Senaratne, 2014, Ge1-ySny (y = 0.01-0.10) alloys on Ge-buffered Si: synthesis, microstructure, and optical properties, J. Appl. Phys, 116, 133509, 10.1063/1.4896788
Bogumilowicz, 2005, High germanium content SiGe virtual substrates grown at high temperatures, J. Cryst. Growth, 283, 346, 10.1016/j.jcrysgro.2005.06.036
Sun, 2009, Direct gap photoluminescence of n-type tensile-strained Ge-on-Si, Appl. Phys. Lett, 95, 011911, 10.1063/1.3170870
Stange, 2015, Optical transitions in direct-bandgap Ge1-xSnx alloys, ACS Photonics, 2, 1539, 10.1021/acsphotonics.5b00372
Gupta, 2013, Hole mobility enhancement in compressively strained Ge0.93Sn0.07 pMOSFETs, IEEE Electron Device Lett, 34, 831, 10.1109/LED.2013.2259573
Xu, 2014, Synthesis and optical properties of Sn-rich Ge1-x-ySixSny materials and devices, Thin Solid Films, 557, 177, 10.1016/j.tsf.2013.08.043
Xu, 2013, Optical properties of Ge1-x-ySixSny alloys with y > x: direct bandgaps beyond 1550 nm, Appl. Phys. Lett, 103, 072111, 10.1063/1.4818673
Grzybowski, 2011, Photoluminescence from heavily doped GeSn:P materials grown on Si(100), Appl. Phys. Lett, 99, 171910, 10.1063/1.3655679
Wu, 2004, Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate, Appl. Phys. Lett, 84, 3741, 10.1063/1.1737057
Delabie, 2009, H2O- and O3-based atomic layer deposition of high-κ dielectric films on GeO2 passivation layers, J. Electrochem. Soc, 156, G163, 10.1149/1.3200902
Zhang, 2011, Suppression of ALD-induced degradation of Ge MOS interface properties by low power plasma nitridation of GeO2, J. Electrochem. Soc, 158, G178, 10.1149/1.3599065
De Jaeger, 2005, Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates, Microelectron. Eng, 80, 26, 10.1016/j.mee.2005.04.040
Wu, 2004, Alternative surface passivation on germanium for metal-oxide-semiconductor applications with high-k gate dielectric, Appl. Phys. Lett, 85, 4127, 10.1063/1.1812835
Zhang, 2011, Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation, Appl. Phys. Lett, 98, 112902, 10.1063/1.3564902
Zhang, 2011, 28.3.1
Zhang, 2012, High-mobility Ge pMOSFET with 1-nm EOT Al2O3/GeOx/Ge gate stack fabricated by plasma post oxidation, IEEE Trans. Electron Devices, 59, 335, 10.1109/TED.2011.2176495
Takagi, 2013, Ge gate stacks based on Ge oxide interfacial layers and the impact on MOS device properties, Microelectron. Eng, 109, 389, 10.1016/j.mee.2013.04.034
Zhang, 2013, 633
Merckling, 2011, Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer, Appl. Phys. Lett, 98, 192110, 10.1063/1.3589992
Gupta, 2013, Atomic layer deposition of Al2O3 on germanium-tin (GeSn) and impact of wet chemical surface pre-treatment, Appl. Phys. Lett, 103, 241601, 10.1063/1.4850518
Gupta, 2012, GeSn channel n and p MOSFETs, ECS Trans, 50, 937, 10.1149/05009.0937ecst
Gupta, 2014, New materials for post-Si computing: Ge and GeSn devices, MRS Bull, 39, 678, 10.1557/mrs.2014.163
Han, 2011
Gong, 2012, 99
Gong, 2013, Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation, IEEE Electron Device Lett, 34, 339, 10.1109/LED.2012.2236880
Gong, 2013, Gate stack reliability of MOSFETs with high-mobility channel materials: bias temperature instability, IEEE Trans. Device Mater. Reliab, 13, 524, 10.1109/TDMR.2013.2277935
Guo, 2014, Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement, ECS J. Solid State Sci. Technol, 3, Q162, 10.1149/2.0111408jss
Wirths, 2014, High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors, ACS Appl. Mater. Interfaces, 7, 62, 10.1021/am5075248
Gupta, 2011, 398
Lieten, 2013, Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si(111) using solid phase epitaxy, Appl. Phys. Express, 6, 101301, 10.7567/APEX.6.101301
Wang, 2013, Strained germanium–tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide passivation, Solid. State. Electron, 83, 66, 10.1016/j.sse.2013.01.031
Liu, 2014, Hole mobility enhancement of GeSn/Ge pMOSFETs with an interlayer formed by Sn-assisted oxynitridation, ECS Solid State Lett, 3, Q76, 10.1149/2.0071411ssl
Liu, 2014, Mobility enhancement in undoped Ge0.92Sn0.08 quantum well p-channel metal-oxide-semiconductor field-effect transistor fabricated on (111)-oriented substrate, Semicond. Sci. Technol, 29, 115027, 10.1088/0268-1242/29/11/115027
Liu, 2015, Strained germanium–Tin (GeSn) P-channel metal-oxide-semiconductor field-effect transistors featuring high effective hole mobility, Int. J. Thermophys, 36, 980, 10.1007/s10765-014-1785-z
Liu, 2014, Strained GeSn p-channel metal-oxide-semiconductor field-effect transistors with in situ Si2H6 surface passivation: impact of Sn composition, IEEE Trans. Electron Devices, 61, 3639, 10.1109/TED.2014.2357446
Maeda, 2015, Ultrathin GeSn p-channel MOSFETs grown directly on Si(111) substrate using solid phase epitaxy, Jpn J. Appl. Phys, 54, 04DA07, 10.7567/JJAP.54.04DA07
Su, 2013, Strained germanium-tin pMOSFET fabricated on a silicon-on-insulator substrate with relaxed Ge buffer, Chinese Phys. Lett, 30, 118501, 10.1088/0256-307X/30/11/118501
Han, 2012, Strained germanium-tin (GeSn) N-channel MOSFETs featuring low temperature N +/P junction formation and GeSnO2 interfacial layer, Dig. Tech. Pap. - Symp. VLSI Technol, 97
Gupta, 2012, GeSn channel nMOSFETs: material potential and technological outlook, Dig. Tech. Pap. - Symp. VLSI Technol, 95
Gaudet, 2006, Thin film reaction of transition metals with germanium, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 24, 474, 10.1116/1.2191861
T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, et al., A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors, IEEE Int. Electron Devices Meet. 2003 (2003) 11.6.1–11.6.3, doi:10.1109/IEDM.2003.1269442.
Yeo, 2007, Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions, Semicond. Sci. Technol, 22, S177, 10.1088/0268-1242/22/1/S42
Wirths, 2015, Ternary and quaternary Ni(Si)Ge(Sn) contact formation for highly strained Ge p- and n-MOSFETs, Semicond. Sci. Technol, 30, 055003, 10.1088/0268-1242/30/5/055003
Yeo, 2005, Finite-element study of strain distribution in transistor with silicon-germanium source and drain regions, Appl. Phys. Lett, 86, 023103, 10.1063/1.1846152
Vincent, 2011, Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors, Microelectron. Eng, 88, 342, 10.1016/j.mee.2010.10.025
Pavesi, 1994, Photoluminescence of AlxGa1-xAs alloys, J. Appl. Phys, 75, 4779, 10.1063/1.355769
Pavesi, 2008, Silicon-based light sources for silicon integrated circuits, Adv. Opt. Technol, 1, 10.1155/2008/416926
Fujii, 1997, 1.54 µm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals to Er3+, Appl. Phys. Lett, 71, 1198, 10.1063/1.119624
Wilson, 1993, Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science, 262, 1242, 10.1126/science.262.5137.1242
Pavesi, 2000, Optical gain in silicon nanocrystals, Nature, 408, 440, 10.1038/35044012
Iacona, 2006, Silicon-based light-emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters, IEEE J. Sel. Top. Quantum Electron, 12, 1596, 10.1109/JSTQE.2006.880605
Zheng, 1994, Room-temperature sharp line electroluminescence at λ=1.54 µm from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett, 64, 2842, 10.1063/1.111977
Jambois, 2010, Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters, Opt. Express, 18, 2230, 10.1364/OE.18.002230
Gösele, 1995, Light-emitting porous silicon, Mater. Chem. Phys, 40, 253, 10.1016/0254-0584(95)01493-4
Canham, 1990, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett, 57, 1046, 10.1063/1.103561
Cullis, 1991, Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature, 353, 335, 10.1038/353335a0
Hirschman, 1996, Silicon-based visible light-emitting devices integrated into microelectronic circuits, Nature, 384, 338, 10.1038/384338a0
Lu, 1995, Quantum confinement and light emission in SiO2/Si superlattices, Nature, 378, 258, 10.1038/378258a0
Süess, 2013, Analysis of enhanced light emission from highly strained germanium microbridges, Nat. Photonics, 7, 466, 10.1038/nphoton.2013.67
Sukhdeo, 2014, Direct bandgap germanium-on-silicon inferred from 5.7% <100> uniaxial tensile strain, Photonics Res, 2, A8, 10.1364/PRJ.2.0000A8
Jain, 2012, A micromachining-based technology for enhancing germanium light emission via tensile strain, Nat. Photonics, 6, 398, 10.1038/nphoton.2012.111
Capellini, 2013, Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach, J. Appl. Phys, 113, 013513, 10.1063/1.4772781
Nam, 2012, Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser, Appl. Phys. Lett, 100, 131112, 10.1063/1.3699224
Sánchez-Pérez, 2011, Direct-bandgap light-emitting germanium in tensilely strained nanomembranes, Proc. Natl. Acad. Sci. U.S.A., 108, 18893, 10.1073/pnas.1107968108
Liu, 2007, Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si, Opt. Express, 15, 11272, 10.1364/OE.15.011272
Liu, 2010, Ge-on-Si laser operating at room temperature, Opt. Lett, 35, 679, 10.1364/OL.35.000679
Camacho-Aguilera, 2012, An electrically pumped germanium laser, Opt. Express, 20, 11316, 10.1364/OE.20.011316
Carroll, 2012, Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain, Phys. Rev. Lett, 109, 057402, 10.1103/PhysRevLett.109.057402
Cho, 2011, Fabrication and analysis of epitaxially grown Ge1-xSnx microdisk resonator with 20-nm free-spectral range, IEEE Photonics Technol. Lett, 23, 1535, 10.1109/LPT.2011.2163929