Si/C Composites as Negative Electrode for High Energy Lithium Ion Batteries

Chinese Journal of Chemistry - Tập 35 Số 1 - Trang 21-29 - 2017
Yi Zhang1, Yusong Zhu1, Lijun Fu1, Jixing Meng2, Nengfei Yu1, Jing Wang1, Yuping Wu1
1College of Energy and Institute for Electrochemical Energy Storage, Nanjing Tech University, Nanjing, Jiangsu 211816, China
2Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China

Tóm tắt

Abstract

Silicon is very promising negative electrode materials for improving the energy density of lithium‐ion batteries (LIBs) because of its high specific capacity, moderate potential, environmental friendliness, and low cost. However, the volume variation of Si negative electrodes is huge during lithiation/delithiation processes which results in pulverization, low cycling efficiency, and permanent capacity loss. In order to overcome this problem, tremendous efforts have been attempted. Among them the most successful strategy is to incorporate other components into silicon to form composite, especially the carbon medium. In this mini review, the recent progress on Si/C materials used as negative electrode of LIBs is summarized such as Si/amorphous carbon composite, Si/graphene composites, Si/carbon nanotubes or fibers composites. The fabrication, structure, electrochemical performances of different Si/C composites are discussed. In addition, some future directions are pointed out.

Từ khóa


Tài liệu tham khảo

10.1039/c1ee01388b

10.1002/cjoc.201400551

10.1126/science.1212741

10.21127/yaoyigc20160002

10.1002/cjoc.201500519

10.1038/ncomms3487

10.1149/1.2044135

10.1016/S0378-7753(99)00194-9

10.1149/1.1390769

10.1021/nn401059h

10.1002/adma.200802290

10.1002/adma.201201779

10.1039/c3ta01640d

10.1002/adma.201400578

10.1002/adma.201301795

10.1021/nn502779n

10.1016/j.jpowsour.2014.05.096

10.1039/c2cc17061b

10.1126/science.1209816

10.1039/b919738a

Favors Z, 2014, Sci. Rep., 4, 1

10.1039/c4ee00768a

10.1021/nl204551m

10.1039/c0jm03842c

10.1039/c3ta01310c

10.1016/j.jpowsour.2013.03.080

10.1002/anie.201310412

10.1039/C3NR03090C

10.1039/C1JM14568A

10.1016/j.elecom.2010.08.036

10.1016/S0013-4686(03)00030-6

10.1016/S0167-2738(98)00557-8

10.1016/j.ssi.2004.01.031

10.1016/j.electacta.2012.11.092

10.1002/smll.201402072

10.1021/nl403943g

10.1038/srep10908

10.1038/srep07659

10.1351/pac200678101889

10.1126/science.1099074

10.1002/adma.200400719

10.1039/c4nr00318g

10.1002/adma.201300844

10.1002/adfm.201303766

10.1039/C4EE02578D

10.1002/chem.201404981

10.1016/j.electacta.2015.10.087

10.1039/C5TA03861H

10.1021/nn5048052

10.1038/ncomms9597

10.1002/adma.201103044

10.1002/adfm.201202412

10.1002/adma.201301920

10.1039/c0cc02870c

10.1039/c1cp23062j

10.1016/j.carbon.2016.06.068

10.1016/j.carbon.2014.08.017