Tôi nên ở lại, tôi nên đi hay một cái gì đó ở giữa? Tiềm năng của các chiến lược di trú khác biệt liên quan đến ký sinh trùng và tuổi tác

Evolutionary Ecology - Tập 37 - Trang 189-202 - 2022
Michelle Wille1,2, Marcel Klaassen3
1Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences, School of Medical Sciences, The University of Sydney, Sydney, Australia
2Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
3Centre for Integrative Ecology, Deakin University, Geelong, Australia

Tóm tắt

Hành vi di cư dài hạn theo mùa của hàng triệu triệu con vật có thể một phần đã phát triển để giảm nguy cơ nhiễm ký sinh trùng, cùng với những chi phí về thể lực có thể đi kèm với những nhiễm trùng này. Điều này có thể áp dụng cho nhiều chiến lược di cư ở động vật có xương sống, đôi khi có thể quan sát thấy sự khác biệt trong các loài và thường phụ thuộc vào độ tuổi. Trong bài báo này, chúng tôi xem xét một số biến thể phổ biến liên quan đến tuổi tác trong chiến lược di cư, thảo luận về lý do tại sao trong một số loài động vật, các cá thể chưa trưởng thành thường từ bỏ hoặc rearrange di cư của mình so với các cá thể trưởng thành, có thể như một phản ứng ngay lập tức (gần) hoặc dự đoán (cuối cùng) đối với nguy cơ nhiễm trùng và bệnh tật. Chúng tôi đặc biệt tập trung vào hiện tượng “nằm mùa hè”, nơi các cá thể chưa trưởng thành kiêng di cư đến khu vực sinh sản. Chiến lược này đặc biệt phổ biến trong các loài chim biển di cư và cho đến nay đã nhận được ít sự chú ý như một chiến lược để giảm tỷ lệ nhiễm ký sinh trùng, trong khi các cách tiếp cận nghiên cứu so sánh trong cùng một loài có tiềm năng mạnh mẽ để làm sáng tỏ những yếu tố thúc đẩy sự khác biệt trong các chiến lược hành vi.

Từ khóa

#Di cư #ký sinh trùng #chiến lược hành vi #tuổi tác #động vật có xương sống #“nằm mùa hè” #chim biển di cư

Tài liệu tham khảo

Alerstam T (1990) Bird Migration. Cambridge University Press, Cambridge, England. Alerstam T, Hedenstrom A, Akesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260 Altizer S, Bartel R, Han A (2011) Animal migration and infectious disease risk. Science 331:296–302 Altizer S, Davis AK, Cook KC et al (2004a) Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can J Zool 82(5):755–763 Altizer S, Hobson KA, Davis AK et al (2015) Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico. PLoS ONE, 10: e0141371. 0141310.0141371/journal.pone.0141371 Altizer S, Hochachka WM, Dhondt AA (2004b) Seasonal dynamics of mycoplasmal conjunctivitis in eastern North American house finches. J Anim Ecol 73(2):309–322 Amman BR, Carroll SA, Reed ZD et al (2012) Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog, 8(10): e1002877. doi: 1002810.1001371/journal.ppat.1002877 Avgar T, Street G, Fryxell JM (2013) On the adaptive benefits of mammal migration. Cann J Zool 92:481–490 Bartel RA, Oberhauser KS, de Roode JC et al (2011) Monarch butterfly migration and parasite transmission in eastern North America. Ecology 92(2):342–351 Battley PF, Warnock N, Tibbitts TL et al (2012) Contrasting extreme long-distance migration patterns in Bar-tailed Godwits Limosa lapponica. J Avian Biol 43:21–32 Bauer S, Lisovski S, Hahn S (2015) Timing is crucial for consequences of migratory connectivity. Oikos 125:605–612 Bengtsson D, Safi K, Avril A et al (2016) Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host? R Soc Open Sci:. doi: https://doi.org/10.1098/rsos.150633 Bergner LM, Orton RJ, Benavides JA et al (2019) Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol 29:26–39 Berthold P (2001) Bird migration: a general survey. Oxford University Press, Oxford, United Kingdom Binning SA, Shaw AK, Roche DG (2017) Parasites and host performance: Incorporating infection in our understanding of animal movement. Integr Comp Biol 57:267–280 Bradley CA, Altizer S (2005) Parasites hinder monarch butterfly flight: implications for disease spread in migratory hosts. Ecol Lett 8:290–300 Browner LP (1995) Understanding and misunderstanding the migration of the Monarch Butterfly (Nymphalidae) in North America. J Lep Soc 49:304–385 Buchan C, Gilroy JJ, Catry I et al (2019) Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J Anim Ecol 89:678–690 Buehler DM, Tieleman BI, Piersma T (2010) How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to disease. Integr Comp Biol 50:346–357 Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18:287–302 Chylinski C, Boag B, Stear MJ et al (2009) Effects of host characteristics and parasite intensity on growth and fecundity of Trichostrongylus retortaeformis infections in rabbits. Parasitology 136(1):117–123 Dhondt AA, States SL, Dhondt KV et al (2012) Understanding the origin of seasonal epidemics of mycoplasmal conjunctivitis. J Anim Ecol 81(5):996–1003 Egevang C, Stenhouse IJ, Phillips RA et al (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107(5):2078–2081 Eikenaar C, Hegemann A (2016) Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol Letters, 12(3): e20160078. doi: https://doi.org/10.1098/rsbl.2016.0078 Eisenmann E (1951) Northern birds summering in Panama. Wilson Bull 63:181–185 Fernandez G, O’Hara PD, Lank DB (2004) Tropical and subtropical Western sandpipers (Calidris mauri) differ in life history strategies. Onithol Neotrop 15:385–394 Folstad I, Nilssen AC, Halvorsen O et al (1991) Parasite avoidance: the cause of post-calving migrations in Rangifer? Can J Zool 69:2423–2429 Galsworthy SJ, ten Bosch QA, Hoye BJ et al (2011) Effects of infection-induced migration delays on the epidemiology of avian influenza in wild Mallard populations. PLoS ONE 6(10):e26118. https://doi.org/10.1371/journal.pone.0026118 Gnanadesikan GE, Pearse WD, Shaw AK (2017) Evolution of mammalian migrations for refuge, breeding, and food. Ecol Evol 7:5891–5900 Gschweng M, Kalko E, Querner U et al (2008) All across Africa: highly individual migration routes of Eleonoras’s falcon. Proc Roy Soc B 275:2887–2896 Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos 118:624–626 Hake M, Kjellen N, Alerstam T (2003) Age-dependant migration strategy in Honey Buzzards Pernis apivorus tracked by satellite. Oikos 103:385–396 Handel CM, Gill RE Jr (2010) Wayward youth: trans-Beringian movement and differential southward migration by juvenile Sharp-tailed Sandpipers. Arctic 63:273–288 Harrison JA, Underhill DG, Herremans M et al (1997) The Atlas of Southern African Birds. Volume 1: Non Passerines. BirdLife South Africa, Johannesburg, South Africa Hasselquist D, Lindstrom A, Jenni-Eiermann S et al (2007) Long flights do not influence immune responses of a long-distance migrant bird: a wind-tunnel experiment. J Exp Biol 210:1123–1131 Hayman DTS (2015) Biannual birth pulses allow filoviruses to persist in bat populations. Proc Royal Soc B, 282(1803): e20142591. doi: https://doi.org/10.1098/rspb.2014.2591 Hegemann A, Marra PP, Tieleman BI (2015) CAuses and consequences of partial migration in a passerine bird. Am Nat 186:531–546 Helin AS, Wille M, Atterby C et al (2018) A rapid and transient innate immune response to avian influenza infection in mallards. Mol Immunol 95:64–72 Hill SC, Manvell RJ, Schulenburg B et al (2016) Antibody responses to avian influenza viruses in wild birds broaden with age. Proc Royal Soc B 283(1845). doi: https://doi.org/10.1098/rspb.2016.2159 Hockey P, Turpie J, Velasquez C et al (1998) What selective pressures have driven the evolution of deferred northward migration by juvenile waders? J Avian Biol 29:325–330 Hoye BJ, Fouchier RAM, Klaassen M (2012) Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick’s Swans. Proc Royal Soc B 279(1728):529–534 Jeffries KM, Hinch SG, Gale MK et al (2014) Immune response genes and pathogen presence predict migration survival in wild salmon smolts. Mol Ecol 23:5803–5815 Johnson OW (1979) Biology of shorebirds summering on Enewetak Atoll. Stud Avian Biol 2:193–205 Johnson OW, Johnson PM (1983) Plumage-molt-age relationships in “over-summering” and migratory Lesser Golden Plovers. Condor 85:406–419 Klaassen M, Hoye BJ, Nolet BA et al (2012) Ecophysiology of avian migration in the face of current global hazards. Phil Trans Roy Soc B Sci 367:1719–1732 Klaus C, Gethmann J, Hoffmann B et al (2016) Tick infestation in birds and prevalence of pathogens in ticks collected from different places in Germany. Parasitol Res 115(7):2729–2740 Kopeivnikar J, Leung TLF (2014) Flying with diverse passengers: greater richness of parasitic nematodes in migratory birds. Oikos 124:399–405 Krkošek M, Gottesfeld A, Proctor B et al (2007) Effects of host migration, diversity and aquaculture on sea lice threads to Pacfic salmon. Proc Roy Soc B, 274: 3141–3149. doi: 3110.1098/rspb.2007.1122 Kubelka V, Sandercock BK, Szakely T et al (2021) Animal migration to northen latitutes: envirnemtal changes and increasing threats. Trends Ecol Evol: doi https://doi.org/10.1016/j.tree.2021.1008.1010 Kuiken T (2013) Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc Royal Soc B, 280(1763): 20130990. doi: 20130910.20131098/rspb.20132013.20130990 Lank DB, Butler RW, Ireland J et al (2003) Effects of predation danger on migration stragies of sandpipers. Oikos 103:303–319 Latorre-Margalef N, Tolf C, Grosbois V et al (2014) Long-term variation in influenza A virus prevalence and subtype diversity in a migratory Mallards in Northern Europe. Proc Royal Soc B 281. doi: https://doi.org/10.1098/rspb.2014.0098 Lindstrom A, Gill RE, Jamieson SE et al (2011) A puzzling migratory detour: are fueling conditions in Alaska driving the movement of juvenile Sharp-Tailed Sandpipers? The Condor 113(1):129–139 Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98 Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76:326–335 Loftin H (1962) A study of boreal shorebirds summering on Apalachee Bay, Florida. Bird Band 33:21–42 Lozano GA, Lank DB (2003) Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax). Proc Royl Soc B 270(1520):1203–1208 Martinez-Curci N, Isacch JP, D’Amico V et al (2020) To migrate or not: drivers of over-summering in a long distance migratory shorebird. J Avian Biol: e02401. doi:https://doi.org/10.1111/jav.02401 McDonald JL, Robertson A, Silk MJ (2018) Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J Anim Ecol 87(1):101–112 McKinnon EA, Fraser KC, Stanley CQ et al (2014) Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration. PLoS ONE, 9(8): e105605. doi: 105610.101371/journal.pone.0105605 McKinnon L, Smithe PA, Nol E et al (2010) Lower predation risk for migratory birds at high latitudes. Science 327:326–327 McNeil R (1970) Hivernage et estivage d’oiseaux aquatiques nord-americains dans le nord-est du Venezuela (mue, accumulation de graisse, capacite de vol et routes de migration). (In French). Oiseau et R.F.O., 40: 185–302 McNeil R, Diaz MT, Casanova B et al (1995) Trematode parasitism as a possible factor in oversummering of Greater Yellowlegs (Tringa melanoleuca). Ornitologia neotropical, p 6 McNeil R, Diaz MT, Casanova B et al (1996) Trematode infestation as a factor in shorebird oversummering: a case study of the Greater Yellowlegs (Tringa melanoleuca). Bull Scand Soc Parasitol 6:114–117 McNeil R, Diaz MT, Villeneuve A (1994) The Mystery of shorebird over-summering: a new hypothesis. Ardea 82:143–152 Mellon U, Yanez B, Liminana B et al (2011) Summer stating areas of non-breeding Short-toed Snake Eagles Curcaetus gallicus. Bird Study 58:516–521 Meltofte H, Berg TB (2004) Post-breeding phenology of waders in central NE Greenland. Wader Study Group Bulletin 104:22–27 Moller AP, Szep T (2010) The role of parasites in ecology and evolution of migration and migratory connectivity. J Ornith 152:141–150 Noreen E, Bourgeon S, Bech C (2011) Growing old with the immune system: a study of immunosenescence in the zebra finch (Taeniopygia guttata). J Comp Physiol 181(5):649–656 O’Hara PD (2002) The role of feather wear in alternative life history strategies of a long-distance migratory shorebird, the Western Sandpiper. (PhD Thesis), Simon Fraser University, Vancouver, Canada Osterlof S (1977) Migration, wintering areas, and site tenacity of the European Osprey Pandion h. haliaetus (L.). Ornis Scand 8:61–78 Pedersen AB, Jones KE, Nunn CL et al (2007) Infectious diseases and extinction risk in wild mammals. Conserv Biol 21:1269–1279 Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623–631 Poulin R, de Dutra A, D (2021) Animal migrations and parasitism: reciprocal effects within a unified framework. Biolog Rev 96:1331–1348 Puttick GM (1979) Foraging behaviour and activity budgets of curlew sandpipers. Ardea 67:111–122 Ramos R, Garnier R, Gonzalez-Solis J et al (2014) Long antibody persistence and transgenerational transfer of immunity in a long-lived vertebrate. Am Nat 184(6):764–776 Read AF, Graham AL, Raberg L (2008) Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol 6(12):e1000004. https://doi.org/10.1371/journal.pbio.1000004 Reneerkens J, Versluijs TSL, Piersma T et al (2019) Low fitness at low latitudes: Wintering in the tropics incresases migratory delays and mortality rates in an Arctic breeding shorebird. J Anim Ecol 89:691–703 Risely A, Klaassen M, Hoye BJ (2018) Migratory animals feel the cost of getting sick: A meta-analysis across species. J Anim Ecol 87(1):301–314 Schmid Hempel P (2011) Evolutionary parasitology. the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford. United Kingdom Shaw AE, Binning SA (2016) Migratory recovery from infection as a selective pressure for the evolution of migration. Am Nat 187:491–501 Shaw AE, Craft ME, Zuk M et al (2019) Host migration strategy is shaped by forms of parasite transmission and infection cost. J Anim Ecol 88:1601–1612 Soto-Montoya E, Carmona R, Gomez M et al (2009) Oversummering and migrant red knots at Golfo de Santa Clara, Gulf of California, Mexico. Wader Study Group Bulletin 116:191–194 Stone G, Florez-Gonzalez L, Katona SK (1990) Whale migration record. Nature 346:705 Strathmann RR, Hughes TP, Kuris AM et al (2002) Evolution of local recruitment and its consequences for marine populations. Bull Mar Sci 70:377–396 Summers RW, Underhill LG, Prys-Jones RP (1995) Why do young waders in southern Africa delay their first return migration to the breeding grounds? Ardea, 83: 351–357 Tavera EA (2020) Survivorship and Life History Strategies in Relation to Migration Distance in Western and Semipalmated Sandpipers in Peru. (PhD Thesis), Simon Fraser University, Vancouver, Canada Tavera EA, Stauffer GE, Lank DB et al (2020) Oversummering juvenile and adult Semipalmated sandpipers in Peru gain enough survival to compensate for foregone breeding opportunity. Mov Ecol 8:42 Teitelbaum CS, Huang S, Hall RJ et al (2018) Migratory behaviour predicts greater parasite diversity in ungulates. Proc Roy Soc B 285(1875). doi: https://doi.org/10.1098/rspb.2018.0089 Tolf C, Latorre-Margalef N, Wille M et al (2013) Individual variation in influenza A virus infection histories and long-term immune responses in mallards. PLoS ONE, 8(4): e61201. doi: 61210.61371/journal.pone.0061201 van Dijk J, Kleyheeg E, Soons M et al (2015a) Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos. Oikos, 10: 1293–1303. doi:1210.1111/oik.01836 van Dijk JGB, Fouchier RAM, Klaassen M et al (2015b) Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution? Ecol Evol 5(2):436–449 van Dijk JGB, Hoye BJ, Verhagen JH et al (2014) Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol 83(1):266–275 Wetmore A (1927) Our migrant shorebirds in South America. USDA Technical Bulletin No. 26 Wille M, Shi M, Hurt AC et al (2021) RNA virome abundance and diversity is asociated with host age in a bird species. Virology: doi: https://doi.org/10.1016/j.virol.2021.1006.1007