Chuỗi shoshonite-latite của Transbaikalia phía Đông: tuổi 40Ar/39Ar, hóa học địa chất, và thành phần đồng vị Sr-Nd của đá từ hiệp hội núi lửa- pluton Akatui trong trũng Aleksandrovskii Zavod

Russian Geology and Geophysics - Tập 57 - Trang 756-772 - 2016
S.A. Sasim1, S.I. Dril1, A.V. Travin2,3,4, T.A. Vladimirova1, N.S. Gerasimov1, Yu.V. Noskova1
1A.P. Vinogradov Institute of Geochemistry, SB RAS, ul. Favorskogo 1a, Irkutsk, 664033, Russia
2V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
3Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
4Tomsk State University, pr. Lenina 36, Tomsk, 634050, Russia

Tóm tắt

Tóm tắt Bài báo trình bày dữ liệu mới về tuổi, hóa học địa chất, và thành phần đồng vị Sr và Nd của các loại đá từ khối Akatui và các loại đá đồng magma từ đơn vị dưới của Thành phần Kailas (hiệp hội núi lửa-pluton Akatui), nằm trong trũng Aleksandrovskii Zavod. Tuổi 40Ar/39Ar của amphibole tuổi đá monzogabbro thuộc giai đoạn đầu của khối Akatui là 154.8 ± 4.4 triệu năm; đá monzonite của giai đoạn chính có tuổi 40Ar/39Ar là 160.7 ± 3.9 triệu năm, và basalt shoshonite của đơn vị dưới của Thành phần Kailas có tuổi 40Ar/39Ar là 161.5 ± 1.7 triệu năm. Cơ chế địa chất chính cho hiệp hội núi lửa-pluton Akatui là phân đoạn tinh thể của các dung dịch hóa lỏng với ô nhiễm vỏ trái đất ở mức thấp, mà có thể được gợi ý từ các đặc trưng khoáng vật và thạch học, cũng như các đặc tính hóa học địa chất và đồng vị của đá. Dữ liệu hóa học địa chất cho hiệp hội núi lửa-pluton Akatui cho thấy sự giàu có về LILE, LREE, U, Th, và Pb với sự giảm thiểu đáng kể ở các nguyên tố có sức mạnh trường cao (HFSE), chẳng hạn như Nb và Ti. Chúng cũng bị giảm ở P. Dữ liệu đồng vị Sr-Nd (87Sr/86Sr(160 triệu năm) = 0.70642–0.70688 và εNd(160 triệu năm) = – 0.6 đến – 2.2) gợi ý một nguồn manti loại EMII và cũng có thể chỉ ra mức độ ô nhiễm vỏ trái đất không đáng kể trong các dung dịch hóa lỏng đã phát triển.

Từ khóa


Tài liệu tham khảo

Antipin, 1992, Geochemical evolution of calc-alkaline and subalkaline magmatism [in Russian] Arslan, 2013, 40Ar–39Ar dating, whole-rock and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin, Contrib. Mineral. Petrol., 166, 113, 10.1007/s00410-013-0868-3 Bakkali, 1998, Post-collision Neogene volcanism of the Eastern Rif (Morocco): magmatic evolution through the time, Lithos, 45, 523, 10.1016/S0024-4937(98)00048-6 Birck, 1986, Precision K–Rb–Sr isotopic analyses: application to Rb–Sr chronology, Chem. Geol., 56, 73, 10.1016/0009-2541(86)90111-7 Bogatikov, 2010, Magmatism, tEctonics, Geodynamics of the Earth: Association in Time and Space [in Russian], Transactions of Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, RAS, New Series Bulnaev, 2006, The formation of Transbaikal type depressions, Tikhookeanskaya Geologiya, 25, 18 Conticelli, 2009, Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on the Roccamonfina volcanicrocks, Roman Magmatic Province, Southern Italy, Contrib. Mineral. Petrol., 157, 41, 10.1007/s00410-008-0319-8 Conticelli, 2011, Sr–Nd–Pb isotopes from the Radicofani Volcano, Central Italy: constraints on heterogeneities in a veined mantle responsible for the shift from ultrapotassic shoshonite to basaltic andesite magmas in a post-collisional setting, Miner. Petrol., 103, 123, 10.1007/s00710-011-0161-y Dril, S.I., Pokrovskii, B.G., Tatarnikov, S.A., Kozlov, V.D., Sandimirova, G.P., Ronkin, Y.L., 2006. Subduction-accretion complexes of Mongol-Okhotsk Belt and their role in the Phanerozoic granite-formation: granite Sr–O–Nd isotope systematics, in: IsotopeDating of Mineralization, Magmatism, Sedimentation and Metamorphism (Proceedings of the III Russian Conference on Isotope Geochronology) [in Russian]. IGEM RAS, Moscow, Vol. 1, pp. 225–230. Dugen, 2005, Post-collisional transition from subduction to intraplate-type magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere, J. Petrol., 46, 1155, 10.1093/petrology/egi013 Gordienko, 1999, Geodynamics and metallogeny of Mongolo-Transbaikalian region, Geologiya i Geofizika (Russian Geology and Geophysics), 40, 1545 Gorlov, 1963, Geologic structure of Bazanovo-Akatui ore region, Problems of Geology and Genesis of Some Lead-Zinc Deposits, Eastern Transbaikalia [in Russian], 39 Hastie, 2007, Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram, J. Petrol., 48, 2341, 10.1093/petrology/egm062 Kazimirovsky, 1996, Geochemistry and petrology of Late Mesozoic rifting magmatic rocks of Transbaikalia (Nercha-Ingoda rifting zone): PdDThesis Kazimirovsky, 2001, Geochemistry and strontium isotope composition of igneous rocks of the West Usugli bimodal volcano-plutonic association of age J3-K1 (Transbaikalia), Geologiya i Geofizika (Russian Geology and Geophysics), 42, 951 Kelemen, 1993, Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in upper mantle, Earth Planet. Sci. Lett., 120, 11, 10.1016/0012-821X(93)90234-Z Kozlov, 2003, Geochemistry, isotope geochronology and genetic features of Verkhne-Udinsky granitoid batholith (Eastern Transbaikalia), Geochem. Int., 41, 364 Kozlovsky, 2006, Sources of basaltoid magmas in rift settings of an active continental margin: example from the bimodal association of the Noen and Tost Ranges of the Late Paleozoic Gobi–Tien Shan Rift Zone, Southern Mongolia, Petrology, 14, 337, 10.1134/S0869591106040023 Kuzmin, 2014, Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits, Russian Geology and Geophysics (Geologiya i Geofizika), 55, 120, 10.1016/j.rgg.2014.01.002 Lan, 2012, Early Jurassic high-K calc-alkaline and shoshonitic rocks from the Tongshi intrusive complex, eastern North China Craton: Implication for crust-mantle interaction and post-collisional magmatism, Lithos, 140–141, 183, 10.1016/j.lithos.2012.01.015 McCulloh, 1991, Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358, 10.1016/0012-821X(91)90029-H Miller, 1999, Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis, J. Petrol., 9, 1399, 10.1093/petroj/40.9.1399 Morrison, 1980, Characteristics and tectonic setting of shoshonite rock association, Lithos, 13, 97, 10.1016/0024-4937(80)90067-5 Parfenov, 1999, Problems of tectonics of Mongol-Okhotsk Orogenic Belt, Tikhookeanskaya Geologiya, 18, 24 Parfenov, 2003, A model for the formation of orogenic belts in Central and Northeast Asia, Tikhookeanskaya Geologiya, 22, 7 Pearce, 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, Continental Basalts and Mantle Xenoliths, 230 Peccerillo, 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Nothern Turkey, Contrib. Mineral. Petrol., 58, 63, 10.1007/BF00384745 Pervov, 1988, Geochemistry of the subalkaline volcanic series in the two Late-Mesozoic activation stages in southeastern Transbaikalia, Geokhim. Int., 25, 39 2009, Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic, Impact Rock Assemblages [in Russian] Prelevic, 2012, Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of Southwestern Anatolia, Turkey. J. Petrol., 53, 1019, 10.1093/petrology/egs008 Rudnick, 1995, Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 33, 267, 10.1029/95RG01302 Sasim, 2013, Geochemistry and Sr–Nd isotope systematics of shoshonite and trachybasalt series rocks exemplified by the Mesozoic volcanic rocks from Ingoda, Usugli, and Aleksandrovskii Zavod rifting depressions, Eastern Transbaikalia [in Russian], Abstract Book “Geodynamic Evolution of the Lithosphere of the Central Asian Orogenic Belt (from Ocean to Continent), 202 Sasim, 2012, Geochemistry of volcanic rocks of Late Mesozoic rifting association from the Aleksandrovskii Zavod depression (Southeastern Transbaikalia). Irkutsk State University Izvestiya, Series Earth Sciences, 5, 209 2000, State Geological Map of Russian Federation of 1:200 000 scale (second edition), Sheet M-50-X (Aleksandrovkii Zavod) [in Russian] Stern, 2002, Subduction Zones, Rev. Geophys., 40, 3-1, 10.1029/2001RG000108 Sun, 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in Ocean Basins, Geol. Soc. London Spec. Publ., 313 Tauson, 1984, Geochemistry of Mesozoic Latites of Transbaikalia [in Russian] Taylor, 1977, Island arc models and the composition of the continental crust, Island Arcs, Deep Sea Trenches and Back-Arc Basins. Am. Geophys. Un., Maurice Ewing Ser. 1, 325, 10.1029/ME001p0325 Taylor, 1985, The Continental Crust: Its Evolution and Composition Troshin, 1978, Geochemistry of volatile components in magmatic rocks, haloes and ores of Eastern Transbaikalia [in Russian] Turner, 1996, Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts, J. Petrol., 37, 45, 10.1093/petrology/37.1.45 Voronstov, 2007, The evolution of volcanism in the Tugnui-Khilok sector of the western Transbaikalia rift area in the Late Mesozoic and Cenozoic, J. Volcanol. Seismol., 4, 3 Voronstov, 2002, Late Mesozoic magmatism in the Dzhida sector of the Western Transbaikalia rift zone: Evolutionary stages, associations, and sources, Petrologiya, 10, 510 Wang, 2010, Petrogenesis of late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys: Geochronological and geochemical constraints, Lithos, 120, 529, 10.1016/j.lithos.2010.09.012 Whitney, 2010, Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185, 10.2138/am.2010.3371 Yang, 2010, Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-Ms and TIMS, Int. J. Mass Spectrometry, 290, 120, 10.1016/j.ijms.2009.12.011 Yarmolyuk, 2000, Geochemical and isotope parameters of abnormal mantle of North Asia in Late Paleozoic–Early Mesozoic (by data of the examination of intraplatal basalt magmatism), Dokl. Earth Sci., 375A, 1427 Yarmolyuk, 2000, North-Asia superplume in the Phanerozoic: magmatism and geodynamics, Geotectonics, 34, 343 Yarmolyuk, 2003, Magmatism and geodynamics of South-Baikal volcanic area (hot mantle spot) from geochronological, geochemical and isotope (Sr, Nd, O) studies, Petrologiya, 11, 3 Zakharov, M.N. , 1972. Petrology and Geochemistry of Akatui Effusive-Intrusive Complex in the Priargun Structural Zone, Eastern Transbaikalia. PhD Thesis. Irkutsk. Zhao, 2009, Geochemical and Sr–Nd–Pb isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intracontinental subduction beneath southern Tibet, Lithos, 113, 119, 10.1016/j.lithos.2009.02.004