Short-term interactive effects of increased temperatures and acidification on the calcifying macroalgae Lithothamnion crispatum and Sonderophycus capensis
Tài liệu tham khảo
Amado-Filho, 2007, Estructura de los mantos de rodolitos de 4 a 55 metros de profundidad en la costa sur del estado de Espirito Santo, Brasil, Ciencias Marinas, 33, 399, 10.7773/cm.v33i4.1148
Anthony, 2008, Ocean acidification causes bleaching and productivity loss in coral reef builders, Proc. Natl. Acad. Sci., 105, 17442, 10.1073/pnas.0804478105
Anthony, 2011, Ocean acidification and warming will lower coral reef resilience, Global Change Biol., 17, 1798, 10.1111/j.1365-2486.2010.02364.x
Baker, 2008, Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 59, 89, 10.1146/annurev.arplant.59.032607.092759
Basso, 2012, Carbonate production by calcareous red algae and global change, Geodiversitas, 34, 13, 10.5252/g2012n1a2
Bischof, 2012, Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies, 109
Cancellier-Cechinel, 2013, 76
Carmouze, 1994
Celis-Plá, 2017, Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO2 and temperature, Mar. Environ. Res., 130, 157, 10.1016/j.marenvres.2017.07.015
Celis-Pla, 2014, Short-term ecophysiological and biochemical responses of Cystoseira tamariscifolia and Ellisolandia elongata to environmental changes, Aquat. Biol., 22, 227, 10.3354/ab00573
Cruces, 2017, Phenolics as photoprotective mechanism against combined action of UV radiation and temperature in the red alga Gracilaria chilensis?, J. Appl. Phycol.
Chen, 2017, Growth and photosynthetic responses of Ulva lactuca (Ulvales, Chlorophyta) germlings to different pH levels, Mar. Biol. Res., 13, 351, 10.1080/17451000.2016.1267367
Dalinghaus, 2016, 200
Diaz‐Pulido, 2012, Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae, J. Phycol., 48, 32, 10.1111/j.1529-8817.2011.01084.x
Duarte, 2013, Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH, Estuar. Coasts, 36, 221, 10.1007/s12237-013-9594-3
Eggert, 2012, Seaweed responses to temperature, 47
Feely, 2004, Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362, 10.1126/science.1097329
Ferreira, 2015, Anatomical and ultrastructural adaptations of seagrass leaves: an evaluation of the southern Atlantic groups, Protoplasma, 252, 3, 10.1007/s00709-014-0661-9
Figueiredo, 2012, Deep-water rhodolith productivity and growth in the southwestern Atlantic, J. Appl. Phycol., 24, 487, 10.1007/s10811-012-9802-8
Figueroa, 2014, Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: biochemical composition, Aquat. Biol., 22, 177, 10.3354/ab00610
Findlay, 2013, Tidal downwelling and implications for the carbon biogeochemistry of cold-water corals in relation to future ocean acidification and warming, Global Change Biol., 19, 2708, 10.1111/gcb.12256
Flores‐Molina, 2016, Stress tolerance of the endemic Antarctic brown alga Desmarestia anceps to UV radiation and temperature is mediated by high concentrations of phlorotannins, Photochem. Photobiol., 92, 455, 10.1111/php.12580
Glynn, 1996, Coral reef bleaching: facts, hypotheses and implications, Global Change Biol., 2, 495, 10.1111/j.1365-2486.1996.tb00063.x
Gouvêa, 2017, Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga, Limnol. Oceanogr., 62, 2056, 10.1002/lno.10551
Gruber, 2012, Rapid progression of ocean acidification in the California current system, Science, 337, 220, 10.1126/science.1216773
Hall-Spencer, 2008, Volcanic carbon dioxide vents show ecosystem effects of ocean acidification, Nature, 454, 96, 10.1038/nature07051
Harley, 2012, Effects of climate change on global seaweed communities, J. Phycol., 48, 1064, 10.1111/j.1529-8817.2012.01224.x
Harley, 2006, The impacts of climate change in coastal marine systems, Ecol. Lett., 9, 228, 10.1111/j.1461-0248.2005.00871.x
Hofmann, 2012, Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels, Mar. Biol., 159, 783, 10.1007/s00227-011-1854-9
Hurd, 2009, Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs, J. Phycol., 45, 1236, 10.1111/j.1529-8817.2009.00768.x
IPCC, 2014
Jury, 2010, Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates, Global Change Biol., 16, 1632, 10.1111/j.1365-2486.2009.02057.x
Kim, 2004, Oxygen‐dependent H2O2 production by Rubisco, FEBS Lett., 571, 124, 10.1016/j.febslet.2004.06.064
Koch, 2013, Climate change and ocean acidification effects on seagrasses and marine macroalgae, Global Change Biol., 19, 103, 10.1111/j.1365-2486.2012.02791.x
Kram, 2015, Variable responses of temperate calcified and fleshy macroalgae to elevated p CO2 and warming, ICES J. Mar. Sci., 73, 693, 10.1093/icesjms/fsv168
Latham, 2008, Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase, Biosci. Horiz., 1, 104, 10.1093/biohorizons/hzn016
Martin, 2009, Response of Mediterranean coralline algae to ocean acidification and elevated temperature, Global Change Biol., 15, 2089, 10.1111/j.1365-2486.2009.01874.x
Martin, 2017, Effects of ocean warming and acidification on rhodolith/maërl beds, 55
Martins-Pereira, 2004, Estudo da dinâmica das águas do canal da Barra, Barra da Lagoa – Florianópolis, SC, 148
Melzner, 2013, Future ocean acidification will be amplified by hypoxia in coastal habitats, Mar. Biol., 160, 1875, 10.1007/s00227-012-1954-1
Millero, 1998, Distribution of alkalinity in the surface waters of the major oceans, Mar. Chem., 60, 111, 10.1016/S0304-4203(97)00084-4
Moenne, 2016, Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta, Aquat. Toxicol., 176, 30, 10.1016/j.aquatox.2016.04.015
Müller, 2012, UV‐radiation and elevated temperatures induce formation of reactive oxygen species in gametophytes of cold‐temperate/Arctic kelps (Laminariales, Phaeophyceae), Phycol. Res., 60, 27, 10.1111/j.1440-1835.2011.00630.x
Noisette, 2013, Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures, J. Phycol., 49, 746, 10.1111/jpy.12085
Orr, 2005, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681, 10.1038/nature04095
Packard, 1999, The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort?, Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 122, 37, 10.1016/S1095-6433(98)10170-8
Pascelli, 2013, Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil), Aquat. Bot., 111, 62, 10.1016/j.aquabot.2013.05.009
Pospíšil, 2016, Production of reactive oxygen species by photosystem II as a response to light and temperature stress, Front. Plant Sci., 7, 1950, 10.3389/fpls.2016.01950
Randhir, 2002, L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors, Process Biochem., 37, 1247, 10.1016/S0032-9592(02)00006-7
Riul, 2009, Rhodolith beds at the easternmost extreme of South America: community structure of an endangered environment, Aquat. Bot., 90, 315, 10.1016/j.aquabot.2008.12.002
Russell, 2009, Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats, Global Change Biol., 15, 2153, 10.1111/j.1365-2486.2009.01886.x
Sáez, 2015, Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories, Aquat. Toxicol., 159, 81, 10.1016/j.aquatox.2014.11.019
Scherner, 2016, Effects of ocean acidification and temperature increases on the photosynthesis of tropical reef calcified macroalgae, PLoS One, 11, e0154844, 10.1371/journal.pone.0154844
Schreiber, 1990, O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence, Photosynth. Res., 25, 279, 10.1007/BF00033169
Semesi, 2009, Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta), Estuar. Coast. Mar. Sci., 84, 337, 10.1016/j.ecss.2009.03.038
Smith, 2012, Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny, Phytochemistry, 81, 97, 10.1016/j.phytochem.2012.06.003
Steller, 2007, Efecto de la temperatura sobre las tasas de fotosíntesis, crecimiento y calcificación del alga coralina de vida libre Lithophyllum margaritae, Ciencias Marinas, 33, 441, 10.7773/cm.v33i4.1255
Underwood, 1997
Vásquez-Elizondo, 2016, Coralline algal physiology is more adversely affected by elevated temperature than reduced pH, Sci. Rep., 6, 19030, 10.1038/srep19030
Wernberg, 2011, Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming, J. Exp. Mar. Biol. Ecol., 400, 7, 10.1016/j.jembe.2011.02.021
Zavialov, 1999, Sea surface temperature variability off southern Brazil and Uruguay as revealed from historical data since 1854, J. Geophys. Res.: Oceans, 104, 21021, 10.1029/1998JC900096