Short-term effects of fine particulate matter and ozone on the cardiac conduction system in patients undergoing cardiac catheterization
Tóm tắt
Air pollution-induced changes in cardiac electrophysiological properties could be a pathway linking air pollution and cardiovascular events. The evidence of air pollution effects on the cardiac conduction system is incomplete yet. We investigated short-term effects of particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and ozone (O3) on cardiac electrical impulse propagation and repolarization as recorded in surface electrocardiograms (ECG). We analyzed repeated 12-lead ECG measurements performed on 5,332 patients between 2001 and 2012. The participants came from the Duke CATHGEN Study who underwent cardiac catheterization and resided in North Carolina, United States (NC, U.S.). Daily concentrations of PM2.5 and O3 at each participant’s home address were predicted with a hybrid air quality exposure model. We used generalized additive mixed models to investigate the associations of PM2.5 and O3 with the PR interval, QRS interval, heart rate-corrected QT interval (QTc), and heart rate (HR). The temporal lag structures of the associations were examined using distributed-lag models. Elevated PM2.5 and O3 were associated with four-day lagged lengthening of the PR and QRS intervals, and with one-day lagged increases in HR. We observed immediate effects on the lengthening of the QTc interval for both PM2.5 and O3, as well as delayed effects for PM2.5 (lagged by 3 – 4 days). The associations of PM2.5 and O3 with the PR interval and the association of O3 with the QRS interval persisted until up to seven days after exposure. In patients undergoing cardiac catheterization, short-term exposure to air pollution was associated with increased HR and delays in atrioventricular conduction, ventricular depolarization and repolarization.
Tài liệu tham khảo
Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular mortality and long-term exposure to particulate air pollution. Circulation. 2004;109(1):71–7.
Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A. Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol. 2011;23(10):555–92.
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.
Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH et al: Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol 2006, 47(2):362-367.
Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, Benjamin EJ, Vasan RS, Wang TJ. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. Jama. 2009;301(24):2571–7.
Schneider A, Neas LM, Graff DW, Herbst MC, Cascio WE, Schmitt MT, Buse JB, Peters A, Devlin RB. Association of cardiac and vascular changes with ambient PM 2.5 in diabetic individuals. Part Fibre Toxicol. 2010;7(1):14.
Rich DQ, Zareba W, Beckett W, Hopke PK, Oakes D, Frampton MW, Bisognano J, Chalupa D, Bausch J, O'Shea K, et al. Are ambient ultrafine, accumulation mode, and fine particles associated with adverse cardiac responses in patients undergoing cardiac rehabilitation? Environ Health Perspect. 2012;120(8):1162–9.
Hampel R, Schneider A, Bruske I, Zareba W, Cyrys J, Ruckerl R, Breitner S, Korb H, Sunyer J, Wichmann HE, et al. Altered cardiac repolarization in association with air pollution and air temperature among myocardial infarction survivors. Environ Health Perspect. 2010;118(12):1755–61.
Liao D, Shaffer ML, Rodriguez-Colon S, He F, Li X, Wolbrette DL, Yanosky J, Cascio WE. Acute adverse effects of fine particulate air pollution on ventricular repolarization. Environ Health Perspect. 2010;118(7):1010–5.
Baja ES, Schwartz JD, Wellenius GA, Coull BA, Zanobetti A, Vokonas PS, Suh HH. Traffic-related air pollution and QT interval: modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ Health Perspect. 2010;118(6):840–6.
Henneberger A, Zareba W, Ibald-Mulli A, Rückerl R, Cyrys J, Couderc J-P, Mykins B, Woelke G, Wichmann HE, Peters A. Repolarization Changes Induced by Air Pollution in Ischemic Heart Disease Patients. Environ Health Perspect. 2005;113(4):440–6.
Hampel R, Breitner S, Zareba W, Kraus U, Pitz M, Geruschkat U, Belcredi P, Peters A, Schneider A, Cooperative Health Research in the Region of Augsburg Study G. Immediate ozone effects on heart rate and repolarisation parameters in potentially susceptible individuals. Occup Environ Med. 2012;69(6):428–36.
Devlin RB, Duncan KE, Jardim M, Schmitt MT, Rappold AG, Diaz-Sanchez D. Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation. 2012;126(1):104–11.
Liao D, Shaffer ML, He F, Rodriguez-Colon S, Wu R, Whitsel EA, Bixler EO, Cascio WE. Fine particulate air pollution is associated with higher vulnerability to atrial fibrillation--the APACR study. J Toxicol Environ Health A. 2011;74(11):693–705.
Kraus WE, Granger CB, Sketch MH Jr, Donahue MP, Ginsburg GS, Hauser ER, Haynes C, Newby LK, Hurdle M, Dowdy ZE, et al. A Guide for a Cardiovascular Genomics Biorepository: the CATHGEN Experience. J Cardiovasc Transl Res. 2015;8(8):449–57.
Bart BA, Shaw LK, McCants CB, Fortin DF, Lee KL, Califf RM, O’Connor CM. Clinical Determinants of Mortality in Patients With Angiographically Diagnosed Ischemic or Nonischemic Cardiomyopathy. J Am Coll Cardiol. 1997;30(4):1002–8.
Bazett HC. An analysis of the time relations of electrocardiograms. Heart. 1920;7:353–70.
Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. Environ Sci Technol. 2016;50(9):4712–21.
Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. J Air Waste Manag Assoc. 2017;67(1):39–52.
Shi L, Liu P, Kloog I, Lee M, Kosheleva A, Schwartz J. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study. Environ Res. 2016;146:51–8.
Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, et al. Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. Environ Health Perspect. 2013;121(9):1026–33.
Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw. 2011;43(8):1.
National Ambient Air Quality Standards. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed 15 Apr 2018.
Fridericia L. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. Ann Noninvasive Electrocardiol. 2003;8(4):343–51.
Crow RS, Hannan PJ, Folsom AR. Prognostic significance of corrected QT and corrected JT interval for incident coronary heart disease in a general population sample stratified by presence or absence of wide QRS complex: the ARIC Study with 13 years of follow-up. Circulation. 2003;108(16):1985–9.
Desai AD, Yaw TS, Yamazaki T, Kaykha A, Chun S, Froelicher VF. Prognostic Significance of Quantitative QRS Duration. Am J Med. 2006;119(7):600–6.
Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, Carraway MS. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci. 2014;140(1):61–72.
Rückerl R, Greven S, Ljungman P, Aalto P, Antoniades C, Bellander T, Berglind N, Chrysohoou C, Forastiere F, Jacquemin B, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect. 2007;115(7):1072–80.
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front Cardiovasc Med. 2015;2:26.
Chang KT, Shu HS, Chu CY, Lee WH, Hsu PC, Su HM, Lin TH, Voon WC, Lai WT, Sheu SH. Association between C-reactive protein, corrected QT interval and presence of QT prolongation in hypertensive patients. Kaohsiung J Med Sci. 2014;30(6):310–5.
Kim E, Joo S, Kim J, Ahn J, Kim J, Kimm K, Shin C. Association between C-reactive protein and QTc interval in middle-aged men and women. Eur J Epidemiol. 2006;21(9):653–9.
Yue W, Schneider A, Rückerl R, Koenig W, Marder V, Wang S, Wichmann H-E, Peters A, Zareba W. Relationship between electrocardiographic and biochemical variables in coronary artery disease. Int J Cardiol. 2007;119(2):185–91.
Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, Ector J, Willems R. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016;5(6):e003264.
Park SK, O’Neill MS, Vokonas PS, Sparrow D, Schwartz J. Effects of Air Pollution on Heart Rate Variability: The VA Normative Aging Study. Environ Health Perspect. 2004;113(3):304–9.
Schneider A, Hampel R, Ibald-Mulli A, Zareba W, Schmidt G, Schneider R, Rückerl R, Couderc JP, Mykins B, Oberdörster G. Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part Fibre Toxicol. 2010;7(1):29.
Zanobetti A, Gold DR, Stone PH, Suh HH, Schwartz J, Coull BA, Speizer FE. Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environ Health Perspect. 2010;118(3):324.
Park SK, Auchincloss AH, O'Neill MS, Prineas R, Correa JC, Keeler J, Barr RG, Kaufman JD, Diez Roux AV. Particulate air pollution, metabolic syndrome, and heart rate variability: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2010;118(10):1406–11.
Bartell SM, Longhurst J, Tjoa T, Sioutas C, Delfino RJ. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease. Environ Health Perspect. 2013;121(10):1135–41.
World Health Organization. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide-Global update 2005-Summary of risk assessment, 2006. Geneva: WHO; 2006.
Al-Khatib SM, LaPointe NMA, Kramer JM, Califf RM. What clinicians should know about the QT interval. Jama. 2003;289(16):2120–7.
Sarnat JA, Brown KW, Schwartz J, Coull BA, Koutrakis P. Ambient gas concentrations and personal particulate matter exposures: implications for studying the health effects of particles. Epidemiology. 2005;16(3):385–95.