Short-term changes of metal availability in soil. II: The influence of earthworm activity

Applied Soil Ecology - Tập 49 - Trang 178-186 - 2011
T. Natal-da-Luz1, G. Ojeda1, M. Costa2, J. Pratas3, R.P. LAnno4, C.A.M. Van Gestel5, J.P. Sousa1
1IMAR-CMA, Dept. Life Sciences, Apartado 3046, EC Universidade de Coimbra, 3001-401 Coimbra, Portugal
2DEQAL, Direcção Regional de Agricultura e Pescas do Norte, Estrada Exterior da Circunvalação, 11846, 4460-281 Senhora da Hora, Portugal
3Dept. Earth Sciences, Largo Marquês de Pombal, 3000-272 Coimbra, Portugal
4Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
5Department of Animal Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Tài liệu tham khảo

Bengtsson, 1986, Effects of metal pollution on the earthworm Dendrobaena rubida (Sav.) in acidified soils, Water Air Soil Pollut., 28, 361, 10.1007/BF00583501 Blakemore, 2007 Bohlen, 2002, Earthworms, 370 Branco, 2005, Impact of chromium contaminated wastewaters on the microbial community of a river, FEMS Microbiol. Ecol., 54, 35, 10.1016/j.femsec.2005.02.014 Bruus Pedersen, 2001, Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination, Ecotox. Environ. Safe., 49, 54, 10.1006/eesa.2001.2043 Chapman, 1965, Cation-exchange capacity, 891 Coeurdassier, 2007, Earthworms influence metal transfer from soil to snails, Appl. Soil Ecol., 35, 302, 10.1016/j.apsoil.2006.08.004 European Community, 1986, Directive 86/278/EEC: Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture, Off. J. Eur. Commun. L. Legis., 181, 0006 Houba, 2000, Soil analysis procedures using 0.01M calcium chloride as extraction reagent, Commun. Soil Sci. Plan., 31, 1299, 10.1080/00103620009370514 Ireland, 1979, Metal accumulation by the earthworms Lumbricus rubellus, Dendrobaena veneta and Eiseniella tetraedra living in heavy metal polluted sites, Environ. Pollut., 19, 201, 10.1016/0013-9327(79)90041-7 ISO, 1999 Kelly, 1999, Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study, Soil Biol. Biochem., 31, 1455, 10.1016/S0038-0717(99)00059-0 Lanno, 2004, Approaches for determining the bioavailability of chemicals in soil for earthworms, Ecotox. Environ. Safe., 57, 39, 10.1016/j.ecoenv.2003.08.014 Laskowski, 2010, Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations, Sci. Total Environ., 408, 3794, 10.1016/j.scitotenv.2009.11.017 Lavelle, 2001 Liu, 2005, Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge, Environ. Int., 31, 874, 10.1016/j.envint.2005.05.033 LNEC, 1970 Lock, 2002, Ecotoxicity of chromium (III) to Eisenia fetida, Enchytraeus albidus, and Folsomia candida, Ecotox. Environ. Safe., 51, 203, 10.1006/eesa.2001.2122 Lock, 2003, Comparative toxicity of a zinc salt, zinc powder and zinc oxide to Eisenia fetida, Enchytraeus albidus and Folsomia candida, Chemosphere, 53, 851, 10.1016/S0045-6535(03)00593-9 Lukkari, 2005, Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species, Ecotox. Environ. Safe., 62, 35, 10.1016/j.ecoenv.2004.11.012 Marinussen, 1997, Cu accumulation in the earthworm Dendrobaena veneta in a heavy metal (Cu, Pb, Zn) contaminated site compared to Cu accumulation in laboratory experiments, Environ. Pollut., 96, 227, 10.1016/S0269-7491(97)00017-1 Marinussen, 1997, Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta, Ecotox. Environ. Safe., 38, 309, 10.1006/eesa.1997.1593 Marinussen, 1997, Heavy metal (Cu, Pb, Zn) accumulation and excretion by the earthworm Dendrobaena veneta, J. Environ. Qual., 26, 278, 10.2134/jeq1997.00472425002600010039x Natal-da-Luz, T., Ojeda, G. Pratas, J., Van Gestel, C.A.M., Sousa, J.P., 2011. Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. Ecotox. Environ. Safe. doi:10.1016/j.ecoenv.2011.05.017. Neuhauser, 1995, Bioconcentration and biokinetics of heavy metals in the earthworm, Environ. Pollut., 89, 293, 10.1016/0269-7491(94)00072-L Neuhauser, 1985, Toxicity of metals to the earthworm Eisenia fetida, Biol. Fert. Soils, 1, 149, 10.1007/BF00301782 Peijnenburg, 2007, Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction, Ecotox. Environ. Safe., 67, 163, 10.1016/j.ecoenv.2007.02.008 Peijnenburg, 1999, Relating environmental availability to bioavailability: soil type dependent metal accumulation in the oligochaete Eisenia andrei, Ecotox. Environ. Safe., 44, 294, 10.1006/eesa.1999.1838 Rada, 1996, Bioavailability of cadmium and copper in two soils from the sewage farm of Marrakech city (Morocco): effect of earthworms, Agricoltura Mediterranea, 126, 364 Scott-Fordsmand, 1998, Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay, Ecotoxicology, 7, 291, 10.1023/A:1008824531114 Sizmur, 2008, Impact of Eisenia veneta on As, Cu Pb, and Zn uptake by ryegrass (Lolium perenne L.), Miner. Mag., 72, 495, 10.1180/minmag.2008.072.1.495 Sizmur, 2009, Do earthworms impact metal mobility and availability in soil? A review, Environ. Pollut., 157, 1981, 10.1016/j.envpol.2009.02.029 Spurgeon, 1994, Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metal contamination in terrestrial ecosystems, Environ. Pollut., 84, 123, 10.1016/0269-7491(94)90094-9 Spurgeon, 1996, Effects of variations in the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida, Pedobiologia, 40, 80 USEPA, 1986 USEPA, 1994 USEPA, 2001 Vandewalle, 2008, Review paper on concepts of dynamic ecosystems and their services Van Gestel, 1993, Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida), Sci. Total Environ. Suppl., 585, 10.1016/S0048-9697(05)80061-0 Van Gestel, 1992, Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei, Ecotox. Environ. Safe., 23, 206, 10.1016/0147-6513(92)90059-C Van Gestel, 2008, Physico-chemical and biological parameters determine metal bioavailability in soils, Sci. Total Environ., 406, 385, 10.1016/j.scitotenv.2008.05.050 Vijver, 2003, Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms, Soil Biol. Biochem., 35, 125, 10.1016/S0038-0717(02)00245-6 Wen, 2004, The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils, Biol. Fert. Soils, 40, 181, 10.1007/s00374-004-0761-3 Zar, 1998 Zorn, 2005, The effect of Lumbricus rubellus and Lumbricus terrestris on zinc distribution and availability in artificial soil columns, Biol. Fert. Soils, 41, 212, 10.1007/s00374-004-0824-5 Zorn, 2005, The effect of two endogeic earthworm species on zinc distribution and availability in artificial soil columns, Soil Biol. Biochem., 37, 917, 10.1016/j.soilbio.2004.10.012