Short-term Lake Erie algal bloom prediction by classification and regression models
Tài liệu tham khảo
Arhonditsis, 2004, Evaluation of the current state of mechanistic aquatic biogeochemical modeling, Mar. Ecol. Prog. Ser., 271, 13, 10.3354/meps271013
Arnold, 1998, Large area hydrologic modeling and assessment part I: model development 1, J. Am. Water Resour. Assoc., 34, 73, 10.1111/j.1752-1688.1998.tb05961.x
Assel, 2005, Classification of annual Great Lakes ice cycles: winters of 1973–2002, J. Clim., 18, 4895, 10.1175/JCLI3571.1
Bertani, 2016, Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie, J. Great Lakes Res., 42, 1184, 10.1016/j.jglr.2016.04.002
Bertani, 2017, Tracking cyanobacteria blooms: do different monitoring approaches tell the same story?, Sci. Total Environ., 575, 294, 10.1016/j.scitotenv.2016.10.023
Breiman, 1996, Bagging predictors, Int. J. Mach. Learn. Cybern., 24, 123, 10.1007/BF00058655
Bridgeman, 2013, A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011, J. Great Lakes Res., 39, 83, 10.1016/j.jglr.2012.11.004
Chaffin, 2013, Nitrogen constrains the growth of late summer cyanobacterial blooms in Lake Erie, Adv. Microbiol., 3, 16, 10.4236/aim.2013.36A003
Chaffin, 2014, Summer phytoplankton nutrient limitation in Maumee Bay of Lake Erie during high-flow and low-flow years, J. Great Lakes Res., 40, 524, 10.1016/j.jglr.2014.04.009
Chaffin, 2020, Effectiveness of a fixed-depth sensor deployed from a buoy to estimate water-column cyanobacterial biomass depends on wind speed, J. Environ. Sci., 93, 23, 10.1016/j.jes.2020.03.003
Chen, T. and Guestrin, C. 2016 Xgboost: a scalable tree boosting system, pp. 785–794.
Chen, 2020, A review of the artificial neural network models for water quality prediction, Appl. Sci., 10, 5776, 10.3390/app10175776
Commission, 1972
Del Giudice, 2018, Long-term phosphorus loading and springtime temperatures explain interannual variability of hypoxia in a large temperate lake, Environ. Sci. Technol., 52, 2046, 10.1021/acs.est.7b04730
DePinto, 1986, Impact of phosphorus availability on modelling phytoplankton dynamics, Hydrobiol. Bull., 20, 225, 10.1007/BF02291165
Elliott, 2010, The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature, Glob. Chang. Biol., 16, 864, 10.1111/j.1365-2486.2009.01998.x
Fang, 2019, A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent, Sci. Total Environ., 695, 10.1016/j.scitotenv.2019.133776
Franks, 2018, Recent advances in modelling of harmful algal blooms, Glob. Ecol. Oceanogr. Harmful Algal Blooms, 359, 10.1007/978-3-319-70069-4_19
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 1189
Gers, 2000, Learning to forget: continual prediction with LSTM, Neural Comput., 12, 2451, 10.1162/089976600300015015
Hampel, 2019, Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake Erie: evidence from stable isotope and metatranscriptome data, Harmful Algae, 81, 42, 10.1016/j.hal.2018.11.011
Hastie, 2009
Ho, 2017, Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading, J. Great Lakes Res., 43, 221, 10.1016/j.jglr.2017.04.001
Hochreiter, 1997, Long short-term memory, Neural Comput., 9, 1735, 10.1162/neco.1997.9.8.1735
Hunter, 2008, The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing, Limnol. Oceanogr., 53, 2391, 10.4319/lo.2008.53.6.2391
Joosse, 2011, Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes, Can. J. Soil Sci., 91, 317, 10.4141/cjss10005
Kalcic, 2016, Engaging stakeholders to define feasible and desirable agricultural conservation in western Lake Erie watersheds, Environ. Sci. Technol., 50, 8135, 10.1021/acs.est.6b01420
Kalcic, 2019, Climate change and nutrient loading in the western Lake Erie basin: warming can counteract a wetter future, Environ. Sci. Technol., 53, 7543, 10.1021/acs.est.9b01274
Kane, 2014, Re-eutrophication of Lake Erie: correlations between tributary nutrient loads and phytoplankton biomass, J. Great Lakes Res., 40, 496, 10.1016/j.jglr.2014.04.004
Kratzert, 2018, Rainfall–runoff modelling using long short-term memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005, 10.5194/hess-22-6005-2018
Li, 2021, Machine learning classification algorithms for predicting Karenia brevis blooms on the West Florida shelf, J. Mar. Sci. Eng., 9, 999, 10.3390/jmse9090999
Maier, 1996, The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32, 1013, 10.1029/96WR03529
Manning, 2019, Extending the forecast model: predicting Western Lake Erie harmful algal blooms at multiple spatial scales, J. Great Lakes Res., 45, 587, 10.1016/j.jglr.2019.03.004
Matisoff, 2005, Lake Erie trophic status collaborative study, J. Great Lakes Res., 31, 1, 10.1016/S0380-1330(05)70300-2
McHugh, 2012, Interrater reliability: the kappa statistic, Biochem. Med. (Zagreb), 22, 276, 10.11613/BM.2012.031
Michalak, 2013, Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, Proc. Natl. Acad. Sci., 110, 6448, 10.1073/pnas.1216006110
Millie, 2014, Using artificial intelligence for CyanoHAB niche modeling: discovery and visualization of Microcystis–environmental associations within western Lake Erie, Can. J. Fish. Aquat.Sci., 71, 1642, 10.1139/cjfas-2013-0654
Moore, 2009, Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events, Harmful Algae, 8, 463, 10.1016/j.hal.2008.10.003
Newell, 2019, Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie, Harmful Algae, 81, 86, 10.1016/j.hal.2018.11.003
2021
Obenour, 2014, Using a B ayesian hierarchical model to improve L ake E rie cyanobacteria bloom forecasts, Water Resour. Res., 50, 7847, 10.1002/2014WR015616
Paerl, 2016, Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients, Harmful Algae, 54, 213, 10.1016/j.hal.2015.09.009
Paerl, 2020, Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm, Hydrobiologia, 847, 4359, 10.1007/s10750-019-04087-y
Paerl, 2008, Blooms like it hot, Science, 320, 57, 10.1126/science.1155398
Pyo, 2020, Using convolutional neural network for predicting cyanobacteria concentrations in river water, Water Res., 186, 10.1016/j.watres.2020.116349
Richards, 2010, Unusually large loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie, J. Soil Water Conserv., 65, 450, 10.2489/jswc.65.6.450
Rousso, 2020, A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes, Water Res., 10.1016/j.watres.2020.115959
Rowe, 2016, Vertical distribution of buoyant Microcystis blooms in a Lagrangian particle tracking model for short-term forecasts in Lake Erie, J. Geophys. Res.: Oceans, 121, 5296, 10.1002/2016JC011720
Sayers, 2019, Satellite monitoring of harmful algal blooms in the Western Basin of Lake Erie: a 20-year time-series, J. Great Lakes Res., 45, 508, 10.1016/j.jglr.2019.01.005
Scavia, 2016, A multi-model approach to evaluating target phosphorus loads for Lake Erie, J. Great Lakes Res., 42, 1139, 10.1016/j.jglr.2016.09.007
Sellner, 1997, Physiology, ecology, and toxic properties of marine cyanobacteria blooms, Limnol. Oceanogr., 42, 1089, 10.4319/lo.1997.42.5_part_2.1089
Stumpf, 2016, Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie, J. Great Lakes Res., 42, 1174, 10.1016/j.jglr.2016.08.006
Stumpf, 2012, Interannual variability of cyanobacterial blooms in Lake Erie, PLoS One, 7, e42444, 10.1371/journal.pone.0042444
Tao, 2017, A hybrid EOF algorithm to improve MODIS cyanobacteria phycocyanin data quality in a highly turbid lake: bloom and nonbloom condition, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 4430, 10.1109/JSTARS.2017.2723079
Taunk, 2019, 1255
Thomas, 2018, The predictability of a lake phytoplankton community, over time-scales of hours to years, Ecol Lett, 21, 619, 10.1111/ele.12927
2021
Valbi, 2019, A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea, Sci. Rep., 9, 1, 10.1038/s41598-019-40664-w
Verhamme, 2016, Development of the Western Lake Erie Ecosystem Model (WLEEM): application to connect phosphorus loads to cyanobacteria biomass, J. Great Lakes Res., 42, 1193, 10.1016/j.jglr.2016.09.006
Verma, 2015, Climate change impacts on flow, sediment and nutrient export in a Great Lakes watershed using SWAT, CLEAN–Soil, Air, Water, 43, 1464, 10.1002/clen.201400724
Williams, 1995, Gaussian processes for regression, Adv. Neural Inf. Process. Syst., 8, 514
Wynne, 2013, Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial evaluation, J. Great Lakes Res., 39, 90, 10.1016/j.jglr.2012.10.003
Wynne, 2011, Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model, Ecol. Appl., 21, 2709, 10.1890/10-1454.1
Xia, 2020, River algal blooms are well predicted by antecedent environmental conditions, Water Res., 185, 10.1016/j.watres.2020.116221
Xu, 2021, Contributions of external nutrient loading and internal cycling to cyanobacterial bloom dynamics in Lake Taihu, China: implications for nutrient management, Limnol. Oceanogr., 66, 1492, 10.1002/lno.11700
Xu, 2020, Using long short-term memory networks for river flow prediction, Hydrol. Res., 51, 1358, 10.2166/nh.2020.026
Yuan, 2020, Optimizing climate model selection for hydrological modeling: a case study in the Maumee River basin using the SWAT, J. Hydrol. (Amst.), 588, 10.1016/j.jhydrol.2020.125064
Zhong, 2022, Machine learning-assisted QSAR models on contaminant reactivity toward four oxidants: combining small data sets and knowledge transfer, Environ. Sci. Technol., 56, 681, 10.1021/acs.est.1c04883