Thời gian co giật sau tiêm ngắn có liên quan đến khả năng xác định khu vực bắt đầu co giật của SPECT tưới máu não trong cơn động kinh

Amir Karimzadeh1, Kian Baradaran-Salimi1, Berthold Voges2, Ivayla Apostolova1, Thomas Sauvigny3, Michael Lanz2, Susanne Klutmann1, Stefan Stodieck2, Philipp T. Meyer4, Ralph Buchert1
1Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
2Department of Neurology and Epileptology, Protestant Hospital Alsterdorf, Hamburg, Germany
3Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
4Department of Nuclear Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Tóm tắt

Tóm tắt Đặt vấn đề Mục tiêu của nghiên cứu này là đánh giá tác động của thời gian co giật sau tiêm đến việc xác định khu vực bắt đầu co giật (SOZ) trong SPECT tưới máu não trong quá trình đánh giá trước phẫu thuật đối với bệnh động kinh kháng thuốc. Phương pháp 176 SPECT cơn động kinh được thực hiện với 99mTc-HMPAO (n = 140) hoặc -ECD (n = 36) đã được đưa vào đánh giá hồi cứu. Việc diễn giải hình ảnh SPECT (cùng với MRI cá nhân và bản đồ tăng tưới máu thống kê) liên quan đến sự phân chia bên (phải, trái, không bên nào) và định vị (thái dương, trán, đỉnh, chẩm) của SOZ đã được thực hiện bởi 3 độc giả độc lập. Sự đồng thuận giữa các độc giả được mô tả bằng chỉ số Fleiss’ κ. Một SPECT được coi là "phân chia bên" nếu tất cả các độc giả đồng ý về bán cầu phải hoặc trái. Nó được coi là "định vị" nếu nó là phân chia bên và tất cả các độc giả đồng ý về cùng một thùy trong cùng một bán cầu. Tác động của thời gian tiêm và thời gian co giật sau tiêm đến tỷ lệ SPECT phân chia bên/định vị đã được kiểm tra bằng ANOVA với sự phân loại (bởi giá trị trung vị) thời gian tiêm và thời gian co giật sau tiêm như các yếu tố giữa các đối tượng. Kết quả Giá trị trung vị [khoảng tứ phân vị] (khoảng đầy đủ) của thời gian tiêm và thời gian co giật sau tiêm lần lượt là 30 [24, 40] (3–120) s và 50 [27, 70] (-20–660) s. Chỉ số Fleiss’ κ cho sự phân chia bên của SOZ lớn nhất cho tổ hợp dùng tiêm sớm (< 30 s) và thời gian co giật sau tiêm dài (> 50 s) (κ = 0.894, tất cả các tổ hợp khác κ = 0.659–0.734). Về chỉ số Fleiss’ κ cho sự định vị của SOZ trong 141 (80.1%) SPECT phân chia bên, nó lớn nhất cho tiêm sớm và thời gian co giật sau tiêm ngắn (κ = 0.575, tất cả các tổ hợp khác κ = 0.329–0.368). Tỷ lệ SPECT phân chia bên thấp hơn với thời gian co giật sau tiêm ngắn so với dài (tỷ lệ trung bình biên 74.3% so với 86.3%, p = 0.047). Hiệu ứng này chủ yếu được thúc đẩy bởi các trường hợp với thời gian co giật sau tiêm rất ngắn ≤ 10 s (53.8% phân chia bên). Thời gian tiêm trong khoảng được xem xét không có tác động đáng kể đến tỷ lệ SPECT phân chia bên (p = 0.390). Tỷ lệ SPECT định vị trong các trường hợp phân chia bên không phụ thuộc vào thời gian tiêm hoặc thời gian co giật sau tiêm (p ≥ 0.603). Kết luận Thời gian co giật sau tiêm ngắn có liên quan đến tỷ lệ các trường hợp phân chia bên thấp hơn trong SPECT tưới máu não trong cơn động kinh.

Từ khóa


Tài liệu tham khảo

West S, Nolan SJ, Cotton J, Gandhi S, Weston J, Sudan A, et al. Surgery for epilepsy. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD010541.pub2.

Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9. https://doi.org/10.1056/NEJM200002033420503.

Blend MJ, de Leon OA, Jobe TH, Lin Q, Sychra JJ, Gaviria M. Cerebral perfusion SPECT imaging in epileptic and nonepileptic seizures. Clin Nucl Med. 1997;22:363–8. https://doi.org/10.1097/00003072-199706000-00003.

Van Paesschen W. Ictal SPECT. Epilepsia. 2004;45:35–40. https://doi.org/10.1111/j.0013-9580.2004.04008.x.

Sharp PF, Smith FW, Gemmell HG, Lyall D, Evans NT, Gvozdanovic D, et al. Technetium-99m HM-PAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986;27:171–7.

Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, et al. Technetium-99m d, l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28:191–202.

Leveille J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, et al. Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, Part 2: biodistribution and brain imaging in humans. J Nucl Med. 1989;30:1902–10.

Walovitch RC, Hill TC, Garrity ST, Cheesman EH, Burgess BA, O’Leary DH, et al. Characterization of technetium-99m-L, L-ECD for brain perfusion imaging, Part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med. 1989;30:1892–901.

Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, et al. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med. 1989;30:599–604.

Colamussi P, Calo G, Sbrenna S, Uccelli L, Bianchi C, Cittanti C, et al. New insights on flow-independent mechanisms of 99mTc-HMPAO retention in nervous tissue: in vitro study. J Nucl Med. 1999;40:1556–62.

Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA. The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab. 1988;8:S4-12. https://doi.org/10.1038/jcbfm.1988.27.

O’Brien TJ, Zupanc ML, Mullan BP, O’Connor MK, Brinkmann BH, Cicora KM, et al. The practical utility of performing peri-ictal SPECT in the evaluation of children with partial epilepsy. Pediatr Neurol. 1998;19:15–22. https://doi.org/10.1016/S0887-8994(98)00019-8.

Schwartz TH, Bonhoeffer T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med. 2001;7:1063–7. https://doi.org/10.1038/nm0901-1063.

Juni JE, Waxman AD, Devous MD, Tikofsky RS, Ichise M, Van Heertum RL, et al. Procedure guideline for brain perfusion SPECT using Tc-99m radiopharmaceuticals 3.0. J Nucl Med Technol. 2009;37:191–5. https://doi.org/10.2967/jnmt.109.067850.

Dupont P, Zaknun JJ, Maes A, Tepmongkol S, Vasquez S, Bal CS, et al. Dynamic perfusion patterns in temporal lobe epilepsy. Eur J Nucl Med Mol Imaging. 2009;36:823–30. https://doi.org/10.1007/s00259-008-1040-6.

Zubal IG, Spanaki MV, MacMullan J, Corsi M, Seibyl JP, Spencer SS. Influence of technetium-99m-hexamethylpropylene amine oxime injection time on single-photon emission tomography perfusion changes in epilepsy. Eur J Nucl Med. 1999;26:12–7. https://doi.org/10.1007/s002590050353.

Newton MR, Berkovic SF, Austin MC, Rowe CC, Mckay WJ, Bladin PF. Postictal Switch in blood-flow distribution and temporal-lobe seizures. J Neurol Neurosur Ps. 1992;55:891–4. https://doi.org/10.1136/jnnp.55.10.891.

Rowe CC, Berkovic SF, Sia STB, Austin M, Mckay WJ, Kalnins RM, et al. Localization of epileptic foci with postictal single photon-emission computed-tomography. Ann Neurol. 1989;26:660–8. https://doi.org/10.1002/ana.410260512.

Aungaroon G, Trout A, Radhakrishnan R, Horn PS, Arya R, Tenney JR, et al. Impact of radiotracer injection latency and seizure duration on subtraction ictal SPECT co-registered to MRI (SISCOM) performance in children. Clin Neurophysiol. 2018;129:1842–8. https://doi.org/10.1016/j.clinph.2018.06.010.

Setoain X, Campos F, Donaire A, Mayoral M, Perissinotti A, Ninerola-Baizan A, et al. How to inject ictal SPECT? From manual to automated injection. Epilepsy Res. 2021;175:106691. https://doi.org/10.1016/j.eplepsyres.2021.106691.

Newton MR, Berkovic SF, Austin MC, Rowe CC, Mckay WJ, Bladin PF. Ictal postictal and interictal single-photon emission tomography in the lateralization of temporal-lobe epilepsy. Eur J Nucl Med. 1994;21:1067–71.

Lee SK, Lee SY, Yun CH, Lee HY, Lee JS, Lee DS. Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology. 2006;48:678–84. https://doi.org/10.1007/s00234-006-0106-z.

Lee JY, Joo EY, Park HS, Song P, Byun SY, Seo DW, et al. Repeated ictal SPECT in partial epilepsy patients: SISCOM analysis. Epilepsia. 2011;52:2249–56. https://doi.org/10.1111/j.1528-1167.2011.03257.x.

Kahane P, Merlet I, Grégoire MC, Munari C, Perret J, Mauguière F. An H215 O-PET study of cerebral blood flow changes during focal epileptic discharges induced by intracerebral electrical stimulation. Brain. 1999;122:1851–65. https://doi.org/10.1093/brain/122.10.1851.

Herholz K, Teipel S, Hellwig S, Langner S, Rijntjes M, Klöppel S, et al. Functional and Molecular Neuroimaging. In: Jankovic J, Mazziotta JC, Pomeroy SL, Newman NJ, editors. Neurology in Clinical Practice. 8th ed: Elsevier; 2022.

Avery RA, Spencer SS, Spanaki MV, Corsi M, Seibyl JP, Zubal IG. Effect of injection time on postictal SPET perfusion changes in medically refractory epilepsy. Eur J Nucl Med. 1999;26:830–6. https://doi.org/10.1007/s002590050456.

Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, Nagren K, et al. EANM procedure guideline for brain perfusion SPECT using Tc-99m-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol. 2009;I(36):2093–102. https://doi.org/10.1007/s00259-009-1266-y.

Knudsen GM, Pettigrew KD, Patlak CS, Paulson OB. Blood-brain barrier permeability measurements by double-indicator method using intravenous injection. Am J Physiol. 1994;266:H987–99. https://doi.org/10.1152/ajpheart.1994.266.3.H987.

Prener M, Drejer V, Ziebell M, Jensen P, Madsen CG, Olsen S, et al. Ictal and interictal SPECT with Tc-99m-HMPAO in presurgical epilepsy. I: Predictive value and methodological considerations. Epilepsia Open. 2023. https://doi.org/10.1002/epi4.12786.

Andersen AR, Friberg H, Knudsen KB, Barry DI, Paulson OB, Schmidt JF, et al. Extraction of [99mTc]-d, l-HM-PAO across the blood-brain barrier. J Cereb Blood Flow Metab. 1988;8:S44-51. https://doi.org/10.1038/jcbfm.1988.32.

Jaber M, Taherpour J, Voges B, Apostolova I, Sauvigny T, House PM, et al. No evidence to favor 99mTc-HMPAO or 99mTc-ECD for Ictal brain perfusion SPECT for identification of the seizure onset zone. Clin Nucl Med. 2021;46:890–5. https://doi.org/10.1097/RLU.0000000000003791.

Taherpour J, Jaber M, Voges B, Apostolova I, Sauvigny T, House PM, et al. Predicting the outcome of epilepsy surgery by covariance pattern analysis of ictal perfusion SPECT. J Nucl Med. 2022;63:925–30. https://doi.org/10.2967/jnumed.121.262702.

Knol MJ, Pestman WR, Grobbee DE. The (mis)use of overlap of confidence intervals to assess effect modification. Eur J Epidemiol. 2011;26:253–4. https://doi.org/10.1007/s10654-011-9563-8.

Zapf A, Castell S, Morawietz L, Karch A. Measuring inter-rater reliability for nominal data - which coefficients and confidence intervals are appropriate? BMC Med Res Methodol. 2016;16:93. https://doi.org/10.1186/s12874-016-0200-9.

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology. 1998;50:445–54. https://doi.org/10.1212/wnl.50.2.445.

Prener M, Drejer V, Ziebell M, Jensen P, Madsen CG, Olsen S, et al. Ictal and interictal SPECT with (99m) Tc-HMPAO in presurgical epilepsy. II: Methodological considerations on hyper- and hypoperfusion. Epilepsia Open. 2023. https://doi.org/10.1002/epi4.12833.

Schwartz TH, Hong SB, Bagshaw AP, Chauvel P, Bénar CG. Preictal changes in cerebral haemodynamics: Review of findings and insights from intracerebral EEG. Epilepsy Res. 2011;97:252–66. https://doi.org/10.1016/j.eplepsyres.2011.07.013.

Lauritzen M, Gold L. Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci. 2003;23:3972–80.

Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76. https://doi.org/10.1146/annurev.neuro.29.051605.112819.

Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69. https://doi.org/10.1146/annurev.physiol.66.082602.092845.

Zhao MR, Suh MA, Ma HT, Perry C, Geneslaw A, Schwartz TH. Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. Epilepsia. 2007;48:2059–67. https://doi.org/10.1111/j.1528-1167.2007.01229.x.

Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35. https://doi.org/10.1152/japplphysiol.00966.2005.

Dymond AM, Crandall PH. Oxygen availability and blood-flow in temporal lobes during spontaneous epileptic seizures in man. Brain Res. 1976;102:191–6. https://doi.org/10.1016/0006-8993(76)90587-4.

Brodersen P, Paulson OB, Bolwig TG, Rogon ZE, Rafaelsen OJ, Lassen NA. Cerebral hyperemia in electrically induced epileptic seizures. Arch Neurol. 1973;28:334–8. https://doi.org/10.1001/archneur.1973.00490230070010.

Devous MD Sr, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med. 1998;39:285–93.

Zhao MR, Ma HT, Suh M, Schwartz TH. Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. J Neurosci. 2009;29:2814–23. https://doi.org/10.1523/Jneurosci.4667-08.2009.

Kaminska A, Chiron C, Ville D, Dellatolas G, Hollo A, Cieuta C, et al. Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome. Brain. 2003;126:248–60. https://doi.org/10.1093/brain/awg013.

Van Laere K, Versijpt J, Audenaert K, Koole M, Goethals I, Achten E, et al. 99mTc-ECD brain perfusion SPET: variability, asymmetry and effects of age and gender in healthy adults. Eur J Nucl Med. 2001;28:873–87. https://doi.org/10.1007/s002590100549.

Kaewchur T, Chamroonrat W, Thientunyakit T, Khiewvan B, Wongsurawat N, Chotipanich C, et al. Thai National Guideline for Nuclear Medicine Investigations in Epilepsy. Asia Ocean J Nucl Med Biol. 2021;9.

Garibotto V, Picard F. Nuclear medicine imaging in epilepsy. Epileptologie. 2013;30:109–21.

Ponisio MR, Zempel JM, Day BK, Eisenman LN, Miller-Thomas MM, Smyth MD, et al. The role of SPECT and PET in epilepsy. Am J Roentgenol. 2021;216:759–68. https://doi.org/10.2214/Ajr.20.23336.

Lee DS, Lee SK, Kim YK, Kang E, Lee JS, Chung JK, et al. The usefulness of repeated ictal SPET for the localization of epileptogenic zones in intractable epilepsy. Eur J Nucl Med Mol. 2002;I(29):607–14. https://doi.org/10.1007/s00259-002-0774-9.

Smith BJ, Karvelis KC, Cronan S, Porter W, Smith L, Pantelic MV, et al. Developing an effective program to complete ictal SPECT in the epilepsy monitoring unit. Epilepsy Res. 1999;33:189–97. https://doi.org/10.1016/s0920-1211(98)00097-7.

Yassin A, Al-Mistarehi AH, El-Salem K, Urban A, Plummer C, Mohammadi S, et al. Effect of automatic injectors on the injection latency, safety, and seizure onset zone localization of ictal single photon emission computed tomography studies in adult epilepsy monitoring unit. Epilepsy Res. 2021;169:106522. https://doi.org/10.1016/j.eplepsyres.2020.106522.