Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells

Nature Biotechnology - Tập 18 Số 5 - Trang 538-543 - 2000
Nico P. Dantuma1, Kristina Lindsten2, Rickard Glas2, Marianne Jellne2, Maria G. Masucci2
1Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
2Microbiology and Tumor Biology Center, Karolinska Institutet, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

Finley, D. Ozkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

Heinemeyer, W. Kleinschmidt, J.A. Saidowsky, J. Escher, C. & Wolf, D.H. Proteinase yscE, the yeast proteasome/multicatalytic–multifunctional proteinase: mutants unravel its function in stress-induced proteolysis and uncover its necessity for cell survival. EMBO J. 10 , 555–562 (1991).

Rock, K.L. & Goldberg, A.L. Degradation of cell proteins and the generation of MHC class I- presented peptides. Annu. Rev. Immunol. 17, 739–779 ( 1999).

Schwartz, A.L. & Ciechanover, A. The ubiquitin–proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74 (1999).

Bogyo, M. Gaczynska, M. & Ploegh, H.L. Proteasome inhibitors and antigen presentation. Biopolymers 43, 269–280 (1997).

Lee, D.H. & Goldberg, A.L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).

Teicher, B.A., Ara, G., Herbst, R., Palombella, V.J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999).

Adams, J., et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

Meng, L., Kwok, B.H., Sin, N. & Crews, C.M. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 59, 2798–2801 (1999).

Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA 96, 10403–10408 (1999).

Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct. 28, 295–317 ( 1999).

Laney, J. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427– 430 (1999).

Dick, T.P. et al. Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637–25646 (1998).

Kisselev, A.F., Akopian, T.N., Castillo, V. & Goldberg, A.L. Proteasome active sites allosterically regulate each other, suggesting a cyclical bite–chew mechanism for protein breakdown. Mol. Cell 4, 395–402 (1999).

Dick, T.P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253– 262 (1996).

Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179 –186 (1986).

Johnson, E.S., Ma, P.C., Ota, I.M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 ( 1995).

Gonda, D.K. et al. Universality and structure of the N-end rule. J. Biol. Chem. 264, 16700–16712 ( 1989).

Falnes, P.O. & Olsnes, S. Modulation of the intracellular stability and toxicity of diphtheria toxin through degradation by the N-end rule pathway. EMBO J. 17, 615–625 (1998).

Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129– 135 (1995).

Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal β-subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94, 6629– 6634 (1997).

Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307– 320 (1998).

Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl. Acad. Sci. USA 95 , 13120–13124 (1998).

Schmidtke, G. et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J. Biol. Chem. 274, 35734– 35740 (1999).

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

Suzuki, T. & Varshavsky, A. Degradation signals in lysine–asparagine sequence space. EMBO J. 18, 6017– 6026 (1999).

Lee, D.H. & Goldberg, A.L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 30–38 (1998).

Orlowski, R.Z. The role of the ubiquitin–proteasome pathway in apoptosis. Cell Death Differ. 6, 303–313 (1999).

Gaczynska, M., Rock, K.L. & Goldberg, A.L. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

Nussbaum, A.K. et al. Cleavage motifs of the yeast 20S proteasome β-subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998).