Short- and Medium-range Prediction of Relativistic Electron Flux in the Earth’s Outer Radiation Belt by Machine Learning Methods

Russian Meteorology and Hydrology - Tập 46 - Trang 163-171 - 2021
I. N. Myagkova1, V. R. Shirokii1, Yu. S. Shugai1, O. G. Barinov1, R. D. Vladimirov2, S. A. Dolenko1
1Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
2Lomonosov Moscow State University, GSP-1, Moscow, Russia

Tóm tắt

The ways are studied to improve the quality of prediction of the time series of hourly mean fluxes and daily total fluxes (fluences) of relativistic electrons in the outer radiation belt of the Earth 1 to 24 hours ahead and 1 to 4 days ahead, respectively. The prediction uses an approximation approach based on various machine learning methods, namely, artificial neural networks (ANNs), decision tree (random forest), and gradient boosting. A comparison of the skill scores of short-range forecasts with the lead time of 1 to 24 hours showed that the best results were demonstrated by ANNs. For medium-range forecasting, the accuracy of prediction of the fluences of relativistic electrons in the Earth’s outer radiation belt three to four days ahead increases significantly when the predicted values of the solar wind velocity near the Earth obtained from the UV images of the Sun of the AIA (Atmospheric Imaging Assembly) instrument of the SDO (Solar Dynamics Observatory) are included to the list of the input parameters.

Tài liệu tham khảo

A. V. Belov, L. I. Dorman, E. A. Eroshenko, A. E. Levitin, V. G. Yanke, J. Villoresi, M. Parisi, N. Jucci, N. G. Ptitsyna, M. I. Tyasto, and V. A. Chizhenko, “Effect of the Space on Operation of Satellites,” Geomagnetizm i Aeronomiya, No. 4, 44 (2004) [Geomagn. Aeron., No. 4, 44 (2004)]. S. N. Kuznetsov, I. N. Myagkova, B. Yu. Yushkov, Yu. I. Denisov, E. A. Murav’eva, and K. Kudela, “Dynamics of the Earth Radiation Belts during Strong Magnetic Storms Based on CORONAS-F Data,” Astronomicheskii Vestnik, No. 4, 41 (2007) [Solar Syst. Res., No. 4, 41 (2007)]. I. N. Myagkova, S. A. Dolenko, A. O. Efitorov, V. R. Shirokii, and N. S. Sentemova, “Prediction of Relativistic Electron Flux in the Earth’s Outer Radiation Belt at Geostationary Orbit by Adaptive Methods,” Geomagnetizm i Aeronomiya, No. 1, 57 (2017) [Geomagn. Aeron., No. 1, 57 (2017)]. I. N. Myagkova, V. R. Shirokii, R. D. Vladimirov, O. G. Barinov, and S. A. Dolenko, “Prediction of the Dst Geomagnetic Index Using Adaptive Methods,” Meteorol. Gidrol., No. 3 (2021) [Russ. Meteorol. Hydrol., No. 3, 46 (2021)]. I. N. Myagkova, Yu. S. Shugay, I. S. Veselovsky, and O. S. Yakovchouk, “Comparative Analysis of Recurrent High-speed Solar Wind Streams Influence on the Radiation Environment of Near-earth Space in April–July 2010,” Astronomicheskii Vestnik, No. 2, 47 (2013) [Sol. Syst. Res., No. 2, 47 (2013)]. I. N. Myagkova, Yu. S. Shugai, V. V. Kalegaev, V. A. Kolmogorova, and S. A. Dolenko, “Medium-term Prediction of Relativistic Electron Fluxes in a Geostationary Orbit Using Machine Learning Methods Based on Observations of Solar Coronal Holes,” Geomagnetizm i Aeronomiya, No. 3, 60 (2020) [Geomagn. Aeron., No. 3, 60 (2020)]. S. A. Terekhov, “Genial Committees of Smart Machines,” in Proceedings of the 9th All-Russian Scientific and Technical Conference “Neuroinformatics-2007.” Lectures on Neuroinformatics, Part 2 (MIFI, Moscow, 2007), http://neurolectures.narod.ru/2007/Terekhov-2007.pdf [in Russian]. S. Khaikin, Neural Networks: Complete Course, 2nd ed. (Vil’yams, Moscow, 2006) [in Russian]. D. N. Baker, R. L. McPherron, T. E. Cayton and R. W. Kebesadel, “Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 RE,” J. Geophys. Res., 95 (1990). L. Breiman, “Random Forests,” Mach. Learn, No. 1, 45 (2001). D. G. Cole, “Space Weather: Its Effects and Predictability,” Space Sci. Rev., 107 (2003). R. H. Friedel, W. G. P. Reeves, and T. Obara, “Relativistic Electron Dynamics in the Inner Magnetosphere—A Review,” J. Atmos. Solar-Terr. Phys., 64 (2002). J. H. Friedman, “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis, 38 (1999). M. Fukata, S. Taguchi, T. Okuzawa, and T. Obara, “Neural Network Prediction of Relativistic Electrons at Geosynchronous Orbit during the Storm Recovery Phase: Effects of Recurring Substorms,” Ann. Geophys., No. 7, 20 (2002). H. C. Koons and D. J. Gorney, “A Neural Network Model of the Relativistic Electron Flux at Geosynchronous Orbit,” J. Geophys. Res., 96 (1990). K. Kudela, “Space Weather near Earth and Energetic Particles: Selected Results,” J. Physics: Conf. Series, No. 1, 409 (2013). A. G. Ling, G. P. Ginet, R. V. Hilmer, and K. L. Perry, “A Neural Network-based Geosynchronous Relativistic Electron Flux Forecasting Model,” Space Weather, No. 9, 8 (2010). Machine Learning Techniques for Space Weather, Ed. by E. Camporeale, S. Wing, and J. R. Johnson (Elsevier, 2018). I. Myagkova, S. Dolenko, V. Shiroky, N. Sentemova, and I. Persiantsev, “Horizon of Neural Network Prediction of Relativistic Electrons Flux in the Outer Radiation Belt of the Earth,” in 16th EANN Workshops, September 25–28, 2015, Rhodes Island, Greece, ACM Proceedings (2015). I. N. Myagkova, M. I. Panasyuk, Yu. I. Denisov, V. V. Kalegayev, A. V. Bogomolov, V. O. Barinova, D. A. Parunakyan, and L. I. Starostin, “Correlation between the Earth’s Outer Radiation Belt Dynamics and Solar Wind Parameters at the Solar Minimum According to EMP Instrument Data Onboard the CORONAS-Photon Satellite,” Geomagnetism and Aeronomy, No. 7, 51 (2011). J. T. Nolte, A. S. Krieger, A. F. Timothy, R. E. Gold, E. C. Roelof, G. Vaiana, A. J. Lazarus, J. D. Sullivan, and P. S. McIntosh, “Coronal Holes as Sources of Solar Wind,” Solar Phys., 46 (1976). G. A. Paulikas and J. B. Blake, “Effects of the Solar Wind on Magnetospheric Dynamics: Energetic Electrons at the Synchronous Orbit,” in Quantitative Modeling of Magnetospheric Processes, Geophys. Monogr. Ser., Vol. 21, Ed. by W. P. Olson (AGU, Washington, D.C., 1979). G. D. Reeves, K. L. McAdams, R. H. W. Friedel, and T. P. O’Brien, “Acceleration and Loss of Relativistic Electrons during Geomagnetic Storms,” Geophys. Res. Lett., 30 (2003). G. D. Reeves, S. K. Morley, R. H. W. Friedel, M. G. Henderson, T. E. Cayton, G. Cunningham, J. B. Blake, R. A. Christensen, and D. Thomsen, “On the Relationship between Relativistic Electron Flux and Solar Wind Velocity: Paulikas and Blake Revisited,” J. Geophys. Res., 116 (2011). D.-K. Shin, D.-Y. Lee, K.-C. Kim, J. Hwang, and J. Kim, “Artificial Neural Network Prediction Model for Geosynchronous Electron Fluxes: Dependence on Satellite Position and Particle Energy,” Space Weather, No. 4, 14 (2016). Y. S. Shugay, I. S. Veselovsky, D. B. Seaton, and D. Berghmans, “Hierarchical Approach to Forecasting Recurrent Solar Wind Streams,” Solar Syst. Res., 45 (2011). D. L. Turner, Y. Shprits, M. Hartinger, and V. Angelopoulos, “Explaining Sudden Losses of Outer Radiation Belt Electrons during Geomagnetic Storms,” Nat. Phys., 8 (2012). A. Varotsou, D. Boscher, S. Bourdarie, R. B. Horne, S. A. Glauert, and N. P. Meredith, “Simulation of the Outer Radiation Belt Electrons near Geosynchronous Orbit Including both Radial Diffusion and Resonant Interaction with Whistler-mode Chorus Waves,” Geophys. Res. Lett., 32 (2005). B. Vrsnak, M. Temmer, and A. M. Veronig, “Coronal Holes and Solar Wind High-speed Streams: I. Forecasting the Solar Wind Parameters,” Solar Phys., 240 (2007).