Sự Loại Bỏ Lượng Mưa Ngắn Hạn Thay Đổi Phản Ứng Của Vi Sinh Vật Đối Với Độ Ẩm Đất Ở Một Rừng Nhiệt Đới Ẩm

Microbial Ecology - Tập 69 - Trang 843-854 - 2014
Bonnie G. Waring1, Christine V. Hawkes1
1Section of Integrative Biology, University of Texas at Austin, Austin, USA

Tóm tắt

Nhiều rừng nhiệt đới ẩm, nơi chứa một phần tư trữ lượng carbon sinh khối trên cạn toàn cầu, sẽ trải qua những thay đổi về chế độ lượng mưa trong thế kỷ tới. Phản ứng của vi sinh vật trong đất đối với sự thay đổi lượng mưa có khả năng là một phản hồi quan trọng đối với chu trình carbon của hệ sinh thái, nhưng các cơ chế sinh thái đứng sau những phản ứng này vẫn chưa được hiểu rõ. Chúng tôi đã khảo sát ảnh hưởng của lượng mưa giảm đến số lượng, hoạt động, và thành phần cộng đồng vi sinh vật trong một thí nghiệm loại bỏ lượng mưa kéo dài 6 tháng tại Trạm Sinh học La Selva, Costa Rica. Sau đó, chúng tôi đã đánh giá những tác động kéo dài của các phương pháp điều trị độ ẩm đất trong thực địa bằng cách tiếp xúc đất với một gradient độ ẩm đất được kiểm soát trong phòng thí nghiệm trong 4 tuần. Tại hiện trường, các phản ứng về thành phần và chức năng đối với lượng mưa giảm phụ thuộc vào điều kiện ban đầu, phù hợp với mức độ biến thiên không gian lớn trong các khu rừng nhiệt đới. Tuy nhiên, việc can thiệp về lượng mưa đã thay đổi một cách đáng kể các phản ứng chức năng của vi sinh vật đối với độ ẩm đất. Các cộng đồng đã trải qua hạn hán trước đó thể hiện tỷ lệ hô hấp cao hơn trên đơn vị sinh khối vi sinh vật trong tất cả các điều kiện và thải ra CO2 nhiều hơn đáng kể so với đất đối chứng ở độ ẩm đất thấp. Những mẫu chức năng này gợi ý rằng sự thay đổi trong sinh lý của vi sinh vật có thể tạo ra phản hồi tích cực đối với nồng độ CO2 trong khí quyển đang gia tăng nếu các rừng nhiệt đới ẩm trải qua các mùa khô kéo dài hơn hoặc mạnh mẽ hơn trong tương lai.

Từ khóa

#vi sinh vật #độ ẩm đất #rừng nhiệt đới ẩm #phản ứng sinh thái #carbon khí quyển

Tài liệu tham khảo

Allison S, Martiny J (2008) Resistance resilience and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519 Allison S, Wallenstein M, Bradford M (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340 McGuire K, Treseder K (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535 Frey S, Lee J, Melillo J, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398 Tucker C, Bell J, Pendall E, Ogle K (2012) Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob Chang Biol 19:252–263 Bradford M, Watts B, Davies C (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Chang Biol 16:1576–1588 Sinsabaugh R, Follstad Shah J (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343 Sinsabaugh R, Moorhead D (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem 26:1305–1311 Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327 Waring B, Averill C, Hawkes C (2013) Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett 16:887–894 Strickland M, Lauber C, Fierer N, Bradford M (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451 Treseder K, Kivlin S, Hawkes C (2011) Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment. Ecol Lett 14:933–938 Lennon J, Aanderud Z, Lehmkuhl B, Schoolmaster D Jr (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879 Fierer N, Schimel J, Holden P (2003) Influence of drying–rewetting frequency on soil bacterial community structure. Microb Ecol 45:63–71 Hawkes C, Kivlin S, Rocca J, Huguet V (2011) Fungal community responses to precipitation. Glob Chang Biol 17:1637–1645 Yuste J, Peñuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J (2011) Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–1486 Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748 Webb C, Ackerly D, McPeek M, Donoghue M (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505 Placella S, Brodie E, Firestone M (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci 109:10931–10936 Fierer N, Lauber CL, Ramierz KS, Zaneveld J, Bradford MA, Knight R (2011) Comparative metagenomic phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017 Kraft N, Cornwell W, Webb C, Ackerly D (2007) Trait evolution community assembly and the phylogenetic structure of ecological communities. Am Nat 170:271–283 Cavender-Bares J, Keen A, Miles B (2006) Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109–S122 Neelin J, Münnich M, Su H, Meyerson J, Holloway C (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115 Clark D, Clark D, Oberbauer S (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Chang Biol 16:747–759 Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn. doi:10.1007/s00382-011-1099-9 Rousk J, Bååth E (2011) Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol 78:17–30 McDade L, Bawa KS, Hespinheide HA, Hartshorn GS (1994) La Selva: ecology and natural history of a neotropical rainforest. University of Chicago Press, Chicago Brundrett M, Melville L, Peterson L (eds) (1994) Practical methods in mycorrhiza research. Mycologue Publications, Guelph McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501 Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soils. Soil Biol Biochem 17:837–842 Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA et al (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593 Liu L, King JS, Booker FL, Giardina CP, Allen HJ, Hu S (2009) Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Glob Chang Biol 15:441–453 Nemergut D, Cleveland C, Wieder W, Washenberger C, Townsend A (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–2160 Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621 Caporaso JG, Kuczynski J, Stombugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336 Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461 Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, Linder CR (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61:90–106 Bouskill N, Lim H, Borglin S, Salve R, Wood T, Silver W, Brodie EL (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394 Cleveland C, Wieder W, Reed S, Townsend A (2010) Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–2323 Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156 Sokal RR, Rohlf FJ (eds) (2012) Biometry, 4th edn. WH Freeman, San Francisco Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464 Webb C, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100 Webb C (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155 Martiny A, Treseder K, Pusch G (2012) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838 Strickland M, Rousk J (2010) Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395 Blackwood CB, Dell CJ, Smucker AJM, Paul EA (2006) Eubacterial communities in different soil macroaggregate environments and cropping systems. Soil Biol Biochem 38:720–728 Frey S, Elliott E, Paustian K (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem 31:573–585 Cruz-Martínez K, Suttle K, Brodie E, Power M, Andersen G, Banfield J (2009) Despite strong seasonal responses soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744 Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241 Manzoni S, Schimel J, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938 Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, Conde-Porcuna JM et al (2007) The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci 104:20404–22409 Averill C, Finzi A (2011) Plant regulation of microbial enzyme production in situ. Soil Biol Biochem 43:2457–2460 Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315 Waldrop M, Firestone M (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248 Sardans J, Penuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex forest. Soil Biol Biochem 37:455–461 Zimmerman A, Martiny A, Allison S (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199 Gudelj I, Weitz J, Ferenci T, Horner-Devine M, Marx C, Meyer J et al (2010) An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure. Ecol Lett 13:1073 Schimel J, Balser T, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394 Velicer GJ, Lenski RE (1999) Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80:1168–1179 Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci 104:8649–8654 Davidson E, Janssens I (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173 Russell J, Cook G (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:48–62 Sinsabaugh R, Manzoni S, Moorhead D, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry methodology and modeling. Ecol Lett 16:930–939 Tiemann L, Billings S (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847 Horz H, Barbrook A, Field C, Bohannan B (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci 101:15136 Jobbágy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436 Schlesinger W, Andrews J (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20 Cleveland C, Townsend A, Schmidt S, Constance B (2003) Soil microbial dynamics and biogeochemistry in tropical forests and pastures southwestern Costa Rica. Ecol Appl 13:314–326 Pett-Ridge J, Silver W, Firestone M (2006) Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil. Biogeochemistry 81:95–110 Milton Y, Kaspari M (2007) Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia 153:163–172 Sotta E, Veldkamp E, Schwendenmann L, Guimaraes B, Paixao R, Ruivo M, daCosta ACL, Meir P (2007) Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Glob Chang Biol 13:2218–2229 Phillips O, Aragao L, Lewis S, Fisher J, Lloyd J, Lopez-Gonzalez G et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347 Girvan M, Campbell C, Killham K, Prosser J, Glover L (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313 Schimel JP (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Koerner C (eds) Arctic and Alpine biodiversity: patterns causes and ecosystem consequences. Springer Verlag, New York, NY, pp 239–254