Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine

Springer Science and Business Media LLC - Tập 61 Số 11 - Trang 1989-2002 - 2012
Huiming Chen1, Pi-Hsueh Wang2, Swey-Shen Chen2, Chih-Chun Wen2, Yun‐Hsiang Chen2, Wen‐Chin Yang2, Ning‐Sun Yang3
1Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
2Institute of Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Rd. Sec. 2, Nankang District, Taipei, 11529, Taiwan, ROC
3Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen X, Yang L, Oppenheim JJ, Howard MZ (2002) Cellular pharmacology studies of shikonin derivatives. Phytother Res 16:199–209. doi: 10.1002/ptr.1100

Staniforth V, Wang SY, Shyur LF, Yang NS (2004) Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo. J Biol Chem 279:5877–5885. doi: 10.1074/jbc.M309185200

Su PF, Staniforth V, Li CJ, Wang CY, Chiao MT, Wang SY, Shyur LF, Yang NS (2008) Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human GM-CSF promoter activity in skin tissues. J Biomed Sci 15:813–822. doi: 10.1007/s11373-008-9266-7

Chiu SC, Yang NS (2007) Inhibition of tumor necrosis factor-alpha through selective blockade of Pre-mRNA splicing by shikonin. Mol Pharmacol 71:1640–1645. doi: 10.1124/mol.106.032821

Chiu SC, Tsao SW, Hwang PI, Vanisree S, Chen YA, Yang NS (2010) Differential functional genomic effects of anti-inflammatory phytocompounds on immune signaling. BMC Genomics 11:513. doi: 10.1186/1471-2164-11-513

Lee HJ, Magesh V, Nam D, Lee EO, Ahn KS, Jung MH, Kim DK, Kim JY, Kim SH (2008) Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice. Yakugaku zasshi: J Pharm Soc Jpn 128:1681–1688

Wang Z, Liu T, Gan L, Wang T, Yuan X, Zhang B, Chen H, Zheng Q (2010) Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity. Eur J Pharmacol 643:211–217. doi: 10.1016/j.ejphar.2010.06.027

Ko FN, Lee YS, Kuo SC, Chang YS, Teng CM (1995) Inhibition on platelet activation by shikonin derivatives isolated from Arnebia euchroma. Biochim Biophys Acta 1268:329–334

An S, Park YD, Paik YK, Jeong TS, Lee WS (2007) Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon. Bioorg Med Chem Lett 17:1112–1116. doi: 10.1016/j.bmcl.2006.11.024

Chang IC, Huang YJ, Chiang TI, Yeh CW, Hsu LS (2010) Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull 33:816–824

Yang H, Zhou P, Huang H et al (2009) Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int J Cancer 124:2450–2459. doi: 10.1002/ijc.24195

Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649. doi: 10.1158/1535-7163.MCT-06-0511

Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805:53–71. doi: 10.1016/j.bbcan.2009.08.003

Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73. doi: 10.1038/nri2216

Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20:504–511. doi: 10.1016/j.coi.2008.05.007

Dhodapkar MV, Dhodapkar KM, Palucka AK (2008) Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ 15:39–50. doi: 10.1038/sj.cdd.4402247

Wen CC, Chen HM, Chen SS et al (2011) Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines. J Biomed Sci 18:44. doi: 10.1186/1423-0127-18-44

Steinman RM, Pope M (2002) Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 109:1519–1526. doi: 10.1172/JCI15962

Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376. doi: 10.1146/annurev.immunol.21.120601.141126

Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015

Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289. doi: 10.1038/nri2215

Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. doi: 10.1038/nrm2952

Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25:259–264. doi: 10.1016/j.tips.2004.03.005

Casares N, Pequignot MO, Tesniere A et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701. doi: 10.1084/jem.20050915

Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 56:816–825

Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916. doi: 10.1182/blood-2005-08-3531

Hong SH, Kim J, Kim JM, Lee SY, Shin DS, Son KH, Han DC, Sung YK, Kwon BM (2007) Apoptosis induction of 2′-hydroxycinnamaldehyde as a proteasome inhibitor is associated with ER stress and mitochondrial perturbation in cancer cells. Biochem Pharmacol 74:557–565. doi: 10.1016/j.bcp.2007.05.016

Lomonosova E, Ryerse J, Chinnadurai G (2009) BAX/BAK-independent mitoptosis during cell death induced by proteasome inhibition? Mol Cancer Res 7:1268–1284. doi: 10.1158/1541-7786.MCR-08-0183

Kepp O, Senovilla L, Galluzzi L, Panaretakis T, Tesniere A, Schlemmer F, Madeo F, Zitvogel L, Kroemer G (2009) Viral subversion of immunogenic cell death. Cell Cycle 8:860–869

Hsu PC, Huang YT, Tsai ML, Wang YJ, Lin JK, Pan MH (2004) Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem 52:6330–6337. doi: 10.1021/jf0495993

Ruan M, Yan M, Yang WJ, Qu XZ, Zhou XJ, Chen WT, Zhang CP (2010) Role of NF-kappaB pathway in shikonin induced apoptosis in oral squamous cell carcinoma Tca-8113 cells. Shanghai J Stomatol 19:66–71

Shi M, Xiang J (2006) CD4+ T cell-independent maintenance and expansion of memory CD8+ T cells derived from in vitro dendritic cell activation. Int Immunol 18:887–895. doi: 10.1093/intimm/dxl025

Pavelko KD, Heckman KL, Hansen MJ, Pease LR (2008) An effective vaccine strategy protective against antigenically distinct tumor variants. Cancer Res 68:2471–2478. doi: 10.1158/0008-5472.CAN-07-5937

Staniforth V, Chiu LT, Yang NS (2006) Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse. Carcinogenesis 27:1803–1811. doi: 10.1093/carcin/bgl006

Jung MY, Son MH, Kim SH, Cho D, Kim TS (2011) IL-32gamma induces the maturation of dendritic cells with Th1- and Th17-polarizing ability through enhanced IL-12 and IL-6 production. J Immunol 186:6848–6859. doi: 10.4049/jimmunol.1003996

Blomberg K, Granberg C, Hemmila I, Lovgren T (1986) Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 86:225–229

Ott M, Norberg E, Zhivotovsky B, Orrenius S (2009) Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ 16:1075–1082. doi: 10.1038/cdd.2009.61

Ashe PC, Berry MD (2003) Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry 27:199–214. doi: 10.1016/S0278-5846(03)00016-2

Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941. doi: 10.1074/jbc.M306289200

Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278

Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623. doi: 10.1074/jbc.M010810200

Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV (2009) GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 11:2299–2306. doi: 10.1089/ARS.2009.2568

Al-Hashimi AA, Caldwell J, Gonzalez-Gronow M et al (2010) Binding of anti-GRP78 autoantibodies to cell surface GRP78 increases tissue factor procoagulant activity via the release of calcium from endoplasmic reticulum stores. J Biol Chem 285:28912–28923. doi: 10.1074/jbc.M110.119107

Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61. doi: 10.1038/nm1523

Chaput N, De Botton S, Obeid M, Apetoh L, Ghiringhelli F, Panaretakis T, Flament C, Zitvogel L, Kroemer G (2007) Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med (Berl) 85:1069–1076. doi: 10.1007/s00109-007-0214-1

Lasunskaia EB, Fridlianskaia I, Arnholdt AV, Kanashiro M, Guzhova I, Margulis B (2010) Sub-lethal heat shock induces plasma membrane translocation of 70-kDa heat shock protein in viable, but not in apoptotic, U-937 leukaemia cells. Acta Pathol Microbiol Immunol Scand 118:179–187. doi: 10.1111/j.1600-0463.2009.02576.x

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845. doi: 10.1182/blood-2006-10-054221

Datta R, Oki E, Endo K, Biedermann V, Ren J, Kufe D (2000) XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage. J Biol Chem 275:31733–31738. doi: 10.1074/jbc.M910231199

Yuan BZ, Chapman JA, Reynolds SH (2008) Proteasome inhibitor MG132 induces apoptosis and inhibits invasion of human malignant pleural mesothelioma cells. Transl Oncol 1:129–140

Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44. doi: 10.1038/nature04946

Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4:469–478. doi: 10.1038/nri1372

Korbelik M, Zhang W, Merchant S (2011) Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 60:1431–1437. doi: 10.1007/s00262-011-1047-x

Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M (2009) CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci USA 106:876–881. doi: 10.1073/pnas.0810769106

Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107. doi: 10.1016/j.immuni.2008.11.005

Muranski P, Boni A, Antony PA et al (2008) Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112:362–373. doi: 10.1182/blood-2007-11-120998