Sự thay đổi trong thời gian nở hoa sớm của thực vật ở một vùng sinh thái bán khô hạn dưới ảnh hưởng của biến đổi khí hậu

Biologia - Tập 74 - Trang 437-446 - 2018
Fatih Fazlioglu1
1Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey

Tóm tắt

Biến đổi khí hậu đã có ảnh hưởng đáng kể đến các hệ sinh thái. Đối với các loài động vật có hoa, nhiệt độ tăng cao đã tác động đến thời gian nở hoa của thực vật xung quanh các môi trường sống, trong đó nở hoa sớm đã được kích thích. Các tác động của biến đổi khí hậu đối với thảm thực vật dự kiến sẽ rõ ràng hơn tại các vùng khô hạn do sự không ổn định cao trong lượng mưa và nhiệt độ. Việc đánh giá tác động của biến đổi khí hậu lâu dài lên thực vật hiện nay đã trở nên khả thi nhờ vào việc số hóa ngày càng nhiều các mẫu thực vật trong các viện bảo tàng lịch sử. Chẳng hạn, các mẫu thực vật này có thể được sử dụng để phát hiện sự thay đổi trong thời gian nở hoa. Trong nghiên cứu này, sự thay đổi trong thời gian nở hoa của các loài thực vật thu thập từ một vùng bán khô hạn ở miền Tây Hoa Kỳ (vùng sinh thái Trans-Pecos, Texas, Hoa Kỳ) đã được phân tích bằng cách sử dụng cơ sở dữ liệu viện bảo tàng. Tổng cộng có 7163 hồ sơ viện bảo tàng từ 172 loài đã được xem xét. Những thay đổi có ý nghĩa thống kê đã được phát hiện về ngày nở hoa trong giai đoạn nở hoa sớm của 19 loài thực vật trong vùng bán khô hạn từ năm 1900 đến năm 2017. Theo kết quả kiểm định t, 9 loài đã bị trì hoãn thời gian nở hoa từ 17 đến 50 ngày, trong khi 10 loài bắt đầu nở hoa sớm hơn từ 31 đến 55 ngày (p ≤ 0.05). Tổng thể, những kết quả này góp phần vào việc hiểu rõ hơn về việc thể hiện của các chiến lược sinh sản thực vật bằng cách tiết lộ phản ứng của thực vật trước sự ấm lên toàn cầu và khả năng của thực vật trong việc ứng phó với biến đổi khí hậu.

Từ khóa

#biến đổi khí hậu #thực vật #thời gian nở hoa #vùng bán khô hạn #chiến lược sinh sản

Tài liệu tham khảo

Beaumont LJ, Hartenthaler T, Keatley MR, Chambers LE (2015) Shifting time: recent changes to the phenology of Australian species. Clim Res 63:203–214. https://doi.org/10.3354/cr01294 Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol 21:213–221. https://doi.org/10.1093/treephys/21.4.213 Boulter SL, Kitching RL, Howlett BG (2006) Family, visitors and the weather: patterns of flowering in tropical rain forests of northern Australia. J Ecol 94:369–382. https://doi.org/10.1111/j.1365-2745.2005.01084.x Bowers JE (2005) El Nino and displays of spring-flowering annuals in the Mojave and Sonoran deserts. J Torrey Bot Soc 132:38–49. https://doi.org/10.3159/1095-5674(2005)132[38:ENADOS]2.0.CO;2 Bowers JE (2007) Has climatic warming altered spring flowering date of Sonoran desert shrubs? Southwest Nat 52:347–355. https://doi.org/10.1894/0038-4909(2007)52[347:HCWASF]2.0.CO;2 Campbell BD, Grime J (1992) An experimental test of plant strategy theory. Ecology 73:15–29. https://doi.org/10.2307/1938717 CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. Proc Natl Acad Sci U S A 111:4916–4921. https://doi.org/10.1073/pnas.1323073111 Chambers LE (2009) Evidence of climate related shifts in Australian phenology, 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, July Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916. https://doi.org/10.1093/aob/mcf105. Cheplick GP (1995) Genotypic variation and plasticity of clonal growth in relation to nutrient availability in Amphibromus scabrivalvis. J Ecol 83:459–468. https://doi.org/10.2307/2261599 Cleaveland MK, Votteler TH, Stahle DK, Casteel RC, Banner JL (2011) Extended chronology of drought in south central, southeastern and West Texas. Tex Water J 2:54–96 Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. https://doi.org/10.1016/j.tree.2007.04.003 Davis CC, Willis CG, Connolly B, Kelly C, Ellison AM (2015) Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Am J Bot 102:1599–1609. https://doi.org/10.3732/ajb.1500237 Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, Goodwillie C, Johnston MO, Kelly JK, Moeller DA et al (2010) Plant mating systems in a changing world. Trends Ecol Evol 25:35–43. https://doi.org/10.1016/j.tree.2009.06.013 Etterson JR, Mazer SJ (2016) How climate change affects plants’ sex lives. Science 353:32–33. https://doi.org/10.1126/science.aag1624 Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS 104:1278–1282. https://doi.org/10.1073/pnas.0608379104 Gonzalez-Megias A, Menendez R (2012) Climate change effects on above- and below-ground interactions in a dryland ecosystem. Philos Trans R Soc Lond Ser B Biol Sci 367:3115–3124. https://doi.org/10.1098/rstb.2011.0346 Gallagher RV, Hughes L, Leishman MR (2009) Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Aust J Bot 57:1–9. https://doi.org/10.1071/BT08051 Hart R, Salick J, Ranjitkar S, Xu J (2014) Herbarium specimens show contrasting phenological responses to Himalayan climate. PNAS 111:10615–10619. https://doi.org/10.1073/pnas.1403376111 Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. https://doi.org/10.1038/nature09670 [ICARDA] International Center for Agricultural Research in the Dry Areas (2017) Enhancing resilience: helping dryland communities to thrive. ICARDA Annual Report 2016. International Center for Agricultural Research in the Dry Areas, Beirut, Lebanon [IPCC] Intergovernmental Panel on Climate Change (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge Jones CA, Daehler CC (2018) Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications. PeerJ 6:e4576. https://doi.org/10.7717/peerj.4576 Lauenroth WK, Bradford JB (2009) Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology 2:173–181. https://doi.org/10.1002/eco.53 Lavoie C (2013) Biological collections in an ever changing world: herbaria as tools for biogeographical and environmental studies. Perspect Plant Ecol Evol Syst 15:68–76. https://doi.org/10.1016/j.ppees.2012.10.002 Lehmann C, Rebele F (2005) Phenotypic plasticity in Calamagrostis epigejos (Poaceae): response capacities of genotypes from different populations of contrasting habitats to a range of soil fertility. Acta Oecol 28:127–140. https://doi.org/10.1016/j.actao.2005.03.005 Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. https://doi.org/10.1016/S0169-5347(02)02497-7 Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198. https://doi.org/10.1111/j.1469-8137.2010.03347.x Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R et al (2016) Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst 47:215–237. https://doi.org/10.1146/annurev-ecolsys-121415-032311 Magi M, Semchenko M, Kalamees R, Zobel K (2011) Limited phenotypic plasticity inrange-edge populations: a comparison of co-occurring populations of two Agrimonia species with different geographical distribution. Plant Biol 13:177–184. https://doi.org/10.1111/j.1438-8677.2010.00342.x Maroco JP, Pereira JS, Chaves MM (2000) Growth, photosynthesis and water-use efficiency of two C4 Sahelian grasses subjected to water deficits. J Arid Environ 45:119–137. https://doi.org/10.1006/jare.2000.0638 Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105. https://doi.org/10.1126/science.aan2874 Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavska O, Briede et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x Miller-Rushing AJ, Primack RB, Primack D, Mukunda S (2006) Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am J Bot 93:1667–1674. https://doi.org/10.3732/ajb.93.11.1667 Munguia-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett 14:511–521. https://doi.org/10.1111/j.1461-0248.2011.01601.x Munson SM, Long AL (2017) Climate drives shifts in grass phenology across the western U.S. New Phytol 213:1945–1955. https://doi.org/10.1111/nph.14327 Neil KL, Landrum L, Wu J (2010) Effects of urbanization on flowering phenology in the metropolitan phoenix region of USA: findings from herbarium records. J Arid Environ 74:440–444. https://doi.org/10.1016/j.jaridenv.2009.10.010 [NOAA] National Oceanic and Atmospheric Administration, National Centers for Environmental Information (2018) Climate at a Glance: U.S. Time Series, Average Temperature, published January 2018 from http://www.ncdc.noaa.gov/cag. Accessed Jan 2018 Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692. https://doi.org/10.1016/j.tplants.2010.09.008 Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, Morrone O, Vorontsova MS, Clayton WD, Simpson DA (2014) A global database of C4 photosynthesis in grasses. New Phytol 204:441–446. https://doi.org/10.1111/nph.12942 Palmquist KA, Schlaepfer DR, Bradford JB, Lauenroth WK (2016) Spatial and ecological variation in dryland ecohydrological responses to climate change: implications for management. Ecosphere 7:e01590. https://doi.org/10.1002/ecs2.1590 Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286 Park IW, Schwartz MD (2015) Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int J Biometeorol 59:347–355. https://doi.org/10.1007/s00484-014-0846-0 Pei NC, Kress WJ, Chen BF, Erickson DL, Wong KM, Zhang JL, Ye WH, Huang ZL, Zhang DX (2015) Phylogenetic and climatic constraints drive flowering phenological patterns in a subtropical nature reserve. J Plant Ecol 8:187–196. https://doi.org/10.1093/jpe/rtv009 Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Tredic PD (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264. https://doi.org/10.3732/ajb.91.8.1260 Rafferty NE, Nabity PD (2017) A global test for phylogenetic signal in shifts in flowering time under climate change. J Ecol 105:627–633. https://doi.org/10.1111/1365-2745.12701 Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. https://doi.org/10.1111/j.1461-0248.2006.00950.x Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. https://doi.org/10.1016/j.agrformet.2012.09.012 Runkle J, Kunkel K, Nielsen-Gammon J, Frankson R, Champion S, Stewart B, Romolo L, Sweet W (2017) Texas state climate summary. NOAA Technical Report NESDIS 149-TX, 4 pp Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Müller C et al (2018) Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun 8:13931. https://doi.org/10.1038/ncomms13931 Schmidt-Lebuhn AN, Knerr NJ, Kessler M (2013) Non-geographic collecting biases in herbarium specimens of Australian daisies (Asteraceae). Biodivers Conserv 22:905–919. https://doi.org/10.1007/s10531-013-0457-9 Schwartz MD (2013) Phenology: an integrative environmental science. Springer, Netherlands 610 pp Skubala P (2018) World scientists’ second warning to humanity: the time for change is now. Bioscience 68:238–239. https://doi.org/10.1093/biosci/bix125 Springer CJ, Ward JK (2007) Flowering time and elevated atmospheric CO2. New Phytol 176:243–255. https://doi.org/10.1111/j.1469-8137.2007.02196.x Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerl 44:363–383. https://doi.org/10.1111/j.1438-8677.1995.tb00793.x Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. https://doi.org/10.1016/S1360-1385(00)01797-0 Temme AA, Liu JC, van Hal J, Cornwell WK, Cornelissen JHC, Aerts R (2017) Increases in CO2 from past low to future high levels result in “slower” strategies on the leaf economic spectrum. Perspect Plant Ecol Evol Syst 29:41–50. https://doi.org/10.1016/j.ppees.2017.11.003 [TPWD] Texas Parks and Wildlife Department (2018) https://tpwd.texas.gov/huntwild/wild/wildlife_diversity/wildscapes/ecoregions/ecoregion_10.phtml. Accessed Jan 2018 [TWDB] Texas Water Development Board (2012) The 2012 state water plan, Chapter 4: Climate of Texas. p 145–155 The IMBIE Team (2018) Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558:219–222. https://doi.org/10.1038/s41586-018-0179-y [UN] United Nations Environment Management Group Report (2011) Global drylands: a UN system-wide response. United Nations Walther G, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. https://doi.org/10.1038/416389a Walvoord MA, Phillips FM (2004) Identifying areas of basin-floor recharge in the trans-Pecos region and the link to vegetation. J Hydrol 292:59–74. https://doi.org/10.1016/j.jhydrol.2003.12.029 Whitford WG (2002) Ecology of desert systems. Academic, London Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH, Soltis PS (2017) Old plants, new tricks: Phenological research using herbarium specimens. Trends Ecol Evol 32:531–546. https://doi.org/10.1016/j.tree.2017.03.015 Wright DK (2017) Humans as agents in the termination of the African humid period. Front Earth Sci 5:1–14. https://doi.org/10.3389/feart.2017.00004