Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison

Springer Science and Business Media LLC - Tập 177 Số 7 - Trang 753-763 - 2007
Michael Michaud1, David L. Denlinger1
1Department of Entomology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210-1242, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Mikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15

Chen CP, Denlinger DL, Lee RE (1987) Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol Zool 60:297–304

Chen CP, Denlinger DL (1990) Activation of phosphorylase: response to cold and heat stress in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36:549–554

Chen CP, Lee RE, Denlinger, DL (1991) Cold shock and heat shock: a comparison of the protection generated by pretreatment at less severe temperatures. Physiol Entomol 16:19–26

Chinnasamy G, Bal AK (2003) Seasonal changes in carbohydrates of perennial root nodules of beach pea. J Plant Physiol 160:1185–1192

Chino H (1958) Cabohydrate metabolism in the diapause egg of the silkworm, Bombyx mori II. Conversion of glycogen into sorbitol and glycerol during diapause. J Insect Physiol 2:1–12

Chattopadhyay MK, Kern R, Mistou M-Y, Dandekar AM, Uratsu SL, Richarme G (2004) The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42°C. J Bacteriol 186:8149–8152

Churchill TA, Storey KB (1989) Metabolic consequences of rapid cycles of temperature change for freeze-avoiding vs. freeze tolerant insects. J Insect Physiol 35:579–586

Churchill TA, Storey KB (1996) Organ metabolism and cryoprotectants synthesis during freezing in spring peepers Pseudacris crucifer. Copeia 1996:517–525

Constanzo JP, Lee RE Jr (2005) Cryoprotection by urea in a terrestrially-hibernating frog. J Exp Biol 208:4079–4089

Denlinger DL (1972) Induction and termination of pupal diapause in Sarcophaga (Diptera: Sarcophagidae). Biol Bull 142:11–24

Denlinger DL, Willis JH, Fraenkel G (1972) Rates and cycles of oxygen consumption during pupal diapause in Sarcophaga flesh flies. J Insect Physiol 18:871–882

Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

Dordea M, Floca L, Perseca T (1987) Variation of the content of free amino acids in eri silkworm Philosamia ricini pupae during diapause as influenced by the treatment of larvae with keratrof. Studia Universitatis Babes-Bolyai Biologia 32:56–59

Douglas AE (2000) Reproductive diapause and the bacterial symbiosis in the sycamore aphid Drepanosiphum platanoides. Ecol Entomol 25:256–261

Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Analyt Chem 24:285–294

Flannagan RD, Tammariello SP, Joplin KH, Cikra-Ireland RA, Yocum GD, Denlinger DL (1998) Diapause-specific gene expression in pupae of the flesh fly Sarcophaga crassipalpis. Proc Natl Acad Sci USA 95:5616–5620

Fields PG, Fleurat-Lessard F, Lavenseau L, Febvay G, Peypelut L, Bonnot G (1998) The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J Insect Physiol 44:955–965

Fuchs BC, Bode BP (2006) Stressing out over survival: glutamine as an apoptotic modulator. J Surg Res 131:26–40

Goto M, Fujii M, Suzuki K, Sakai M (1998) Factors affecting carbohydrate and free amino acid content in overwintering larvae of Enosima leucotaeniella. J Insect Physiol 44:87–94

Goto M, Li Y-P, Kayaba S, Outani S, Suzuki K (2001) Cold hardiness in summer and winter diapause and post-diapause pupae of the cabbage armyworm, Mamestra brassicae L. under temperature acclimation. J Insect Physiol 47:709–714

Hayward SAL, Pavlides SC, Tammariello SP, Rinehart JP, Denlinger DL (2005) Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. J Insect Physiol 51:631–640

Hensgens HESJ, Meijer AJ (1980) Inhibition of urea cycle activity by high concentrations of alanine. Biochem J 186:1–4

Horie Y, Kanda T, Mochida Y (2000) Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori. J Insect Physiol 46:1009–1016

Joanisse DR, Storey KB (1995) Temperature acclimation and seasonal responses by enzymes in cold-hardy gall insects. Arch Insect Biochem Physiol 28:339–349

Kageyama T, Ohnishi E (1971) Carbohydrate metabolism in the eggs of the silkworm Bombyx mori II: anaerobiosis and polyol formation. Dev Growth Differ 15:47–55

Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322

Kruuv J, Glofcheski DJ, Lepock JR (1988) Protective effect of glutamine against freeze-thaw damage in mammalian cells. Cryobiology 25:121–130

Kukal O, Denlinger DL, Lee RE Jr (1991) Developmental and metabolic changes induced by anoxia in diapausing and non-diapausing flesh fly pupae. J Comp Physiol [B] 160:683–689

Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperatures. Chapman & Hall, New York, pp 17–46

Lee RE, Denlinger DL (1985) Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol Entomol 10:309–315

Lee RE, Chen CP, Denlinger DL (1987a) A rapid cold-hardening process in insects. Science 238:1415–1417

Lee RE, Chen CP, Meacham MH, Denlinger DL (1987b) Ontogenic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J Insect Physiol 33:587–592

Lee RE, Damodaran K, Yi S-X, Lorigan GA (2006) Rapid cold hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52:459–463

Lefevere KS, Koopmanschap AB, De Kort CAD (1989) Changes in the concentrations of metabolites in hemolymph during and after diapause in female Colorado potato beetle Leptinotarsa decemlineata. J Insect Physiol 35:121–128

Li Y-P, Goto M, Ito S, Sato Y, Sasaki K, Goto N (2001) Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan. J Insect Physiol 47:1181–1187

Malmendal A, Overgaard J, Bundy JG, Sørensen JG, Nielsen NC, Loeschcke V, Holmstrup M (2006) Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am J Physiol Regul Integr Comp Physiol 291:R205–R212

Michaud MR, Denlinger DL (2006) Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 52:1073–1082

Morgan TD, Chippendale GM (1983) Free amino acids of the hemolymph of the southwestern corn borer Diatraea grandiosella and the European corn borer Ostrinia nubilalis in relation to their diapause. J Insect Physiol 29:735–740

Okasaki T, Yamashita O (1981) Changes in glucose and fructose contents during embryonic development of the silkworm Bombyx mori. J Sericult Sci Jpn 50:190–196

Osanai M, Yonezawa Y (1986) Changes in amino-acid pools in the silkworm Bombyx mori during embryonic life: alanine accumulation and its conversion to proline during diapause. Insect Biochem 16:373–380

Overgaard J, Sorensen JG, Petersen SO, Loeschcke V, Holmstrup M (2005) Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51:1173–1182

Phanvijhitsiri K, Musch MW, Ropeleski MJ, Chang EB (2005) Molecular mechanisms of L-glutamine modulation of heat stimulated Hsp25 production. FASEB J 19:A1496–A1497

Pullin AS, Wolda H (1993) Glycerol and glucose accumulation during diapause in a tropical beetle. Physiol Entomol 18:75–78

Rinehart JP, Yocum GD, Denlinger DL (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Sarcophaga crassipalpis. Insect Biochem Mol Biol 30:515–521

Rivers DB, Lee RE Jr, Denlinger DL (2000) Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host, Sarcophaga crassipalpis. J Insect Physiol 46:99–106

Salvucci ME (2000) Sorbitol accumulation in whiteflies: evidence for a role in protecting proteins during heat stress. J Therm Biol 25:353–361

Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgrean K, Roessner-Tunali U, Forbes M, Willmitzer L, Fernie AR, Kopka J (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

Slama K, Denlinger DL (1992) Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method. Arch Insect Biochem Physiol 20:135–143

So P-W, Fuller BJ (2003) Enhanced energy metabolism during cold hypoxic organ preservation: studies on rat liver after pyruvate supplementation. Cryobiology 46:295–300

Stanic B, Jovanovic-Galovic A, Blagojevic DP, Grubor-Lajsic G, Worland R, Spasic MB (2004) Cold hardiness in Ostrinia nubilalis (Lepidoptera: Pyralidae): glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. Eur J Entomol 101:459–466

Storey JM, Storey KB (1983) Regulation of cryoprotectant metabolism in the overwintering gall fly larva Eurosta solidaginis: temperature control of glycerol and sorbitol levels. J Comp Physiol [B] 149:495–502

Storey KB, Storey JM (1986) Freeze tolerant frogs cryoprotectants and tissue metabolism during freeze-thaw cycles. Can J Zool 64:49–56

Tang X, Pikal MJ (2005) The effects of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying. Pharm Res 22:1167–1175

Tomeba H, Oshikiri K, Suzuki K (1988) Changes in the free amino acid pool in the eggs of the emma field cricket Teleogryllus emma (Orthoptera: Gryllidae). Appl Entomol Zool 23:228–233

Touchette BW, Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250:169–205

Tsumuki H, Kanehisa K (1980) Changes in enzyme activities related to glycerol synthesis in hibernating larvae of the rice stem borer Chilo suppressalis. Appl Entomol Zool 15:285–292

Tsvetkova NM, Quinn PJ (1994) Compatible solutes modulate membrane lipid phase behaviour. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 49–62

Wang H-S, Kang L (2005) Effect of cooling rates on the cold hardiness and cryoprotectant profiles of locust eggs. Cryobiology 51:220–229

Wang G, Jiang X, Wu L, Li S (2005) Differences in the density, sinking rate and biochemical composition of Centropages tenuiramis (Copepoda: Calanoida) subitaneous and diapause eggs. Mar Ecol Prog Ser 288:165–171

Weckworth W, Morganthal K (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10:1551–1558

Yi S-X, Adams TS (2000) Effect of pyriproxyfen and photoperiod on free amino acid concentrations and proteins in the hemolymph of the Colorado potato beetle, Leptinotarsa decemlineata (Say). J Insect Physiol 46:1341–1353

Yi S-X, Bai C (1991) A study in chill-induced glycerol production by Ostrinia furnacalis larvae. Acta Entomol Sin 34:129–134

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, Strauss AW, Comeau AM, Eaton RB, Grady GF (2001) Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin Chem 47:1937–1938