Shells of piezoelectric ceramics polarized through their thickness. Report no. 1. Case of nonelectroded surfaces

Strength of Materials - Tập 17 - Trang 96-101 - 1985
B. A. Kudryavtsev, V. Z. Parton, N. A. Senik

Tài liệu tham khảo

V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudpromgiz, Leningrad (1951). V. A. Boriseiko, V. S. Martynenko, and A. F. Ulitko, “Elasticity relations for piezoceramic shells of revolution,” Prikl. Mekh.,12, No. 2, 26–34 (1976). V. A. Boriseiko, V. S. Martynenko, and A. F. Ulitko, “Toward a theory of vibration of piezoceramic shells,” Mat. Fiz.,21, 71–76 (1977). N. A. Senik and B. A. Kudryavtsev, “Equations of the theory of piezoceramic shells,” in: Mechanics of Deformable Bodies and Related Problems of Analysis [in Russian], Mosk. Inst. Khim. Mashinostr., Moscow (1980), pp. 70–76. V. Z. Parton and N. A. Senik, “Use of the method of symbolic integration in the theory of piezoceramic shells,” Prikl. Mat. Mekh.,47, No. 2, 257–262 (1983). J. Mei, “Ultrasonic waveguide delay lines,” in: Physical Acoustics, Vol. 1 A, Academic Press (1964). A. F. Ulitko, “Certain features of the formulation of boundary-value problems of electroelasticity,” in: Current Problems of Mechanics and Aviation [in Russian], Mashinostroenie, Moscow (1982), pp. 290–300. S. A. Ambartsumyan, General Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1974).