Shell-model studies relevant for the low-energy Coulomb excitation in Zn isotopes

Springer Science and Business Media LLC - Tập 59 - Trang 1-13 - 2023
I. Ahmed1, R. Kumar1, K. Hadyńska-Klȩk2, C. Qi3
1Nuclear Physics Group, Inter-University Accelerator Centre, New Delhi, India
2Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
3Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

The low-lying nuclear structure of even-even Zn isotopes ranging from $$^{62}$$ Zn to $$^{70}$$ Zn has been comprehensively examined through large scale shell model calculations. These calculations encompassed the f $$_{5/2}\textrm{p}_{3/2,1/2}\textrm{g}_{9/2}$$ (fpg) model space without any truncation, employing $$^{56}$$ Ni as an inert core. Two different effective interactions, JUN45 and jj44b, were utilized in these calculations. Various critical observables, including excitation energies, reduced transition strengths, and electric quadrupole moments, were computed and then evaluated in the context of existing experimental data. The configurations of the resulting wave functions were also thoroughly analyzed. Furthermore, occupation probabilities for distinct single-particle orbitals were determined, with particular attention given to the pivotal role of the g $$_{9/2}$$ orbital in elucidating the nuclear structure of heavy Zn isotopes. Additionally, rotational invariants were calculated for the ground state, shedding light on a prolate deformation in $$^{62}$$ Zn and $$^{64}$$ Zn, while suggesting moderate prolate-triaxial excitations in $$^{66}$$ Zn, $$^{68}$$ Zn, and $$^{70}$$ Zn. These findings hold significant relevance for interpreting the intriguing outcomes of sub-barrier Coulomb excitation experiments, offering invaluable insights into the static electromagnetic properties of the nucleus through a model-independent approach.

Tài liệu tham khảo

M. Rocchini et al., Phys. Rev. C 130, 122502 (2023) A. Illana et al., Phys. Rev. C 108, 044305 (2023) A.D. Ayangeakaa et al., Phys. Rev. C 105, 054315 (2022) F. Nowacki, A. Obertelli, A. Poves, Prog. Part. Nucl. Phys. 105, 054315 (2022) M. Koizumi et al., Eur. Phys. J. A 18, 87 (2003) D.N. Simister et al., J. Phys. G: Nucl. Part. Phys. 4, 1127 (1978) A. Gade, H. Klein, N. Pietralla, P. Von Brentano, Phys. Rev. C 65, 054311 (2002) M. Rocchini et al., Phys. Rev. C 103, 014311 (2021) J. Henderson et al., Phys. Rev. Lett. 121, 082502 (2018) J.B. Gupta, J.H. Hamilton, Nucl. Phys. A 983, 20 (2019) A.D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016) F.H. Garcia et al., Phys. Rev. Lett. 125, 172501 (2020) R. Budaca, P. Buganu, A.I. Budaca, Nucl. Phys. A 990, 137 (2019) S. Leoni et al., Acta Phys. Pol., B 50, 605 (2019) D. Little et al., Phys. Rev. C 106, 044313 (2022) A. Gade, S.N. Liddick, J. Phys. G Nucl. Part. Phys. 43, 024001 (2016) F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016) Y. Toh et al., Eur. Phys. J. A 9, 353 (2000) Y. Toh et al., J. Phys. G: Nucl. Part. Phys. 27, 1475 (2001) B. Kotliński et al., Nucl. Phys. A 519, 646 (1990) A.E. Kavka et al., Nucl. Phys. A 593, 177 (1995) N. J. Abu Awwad, H. Abusara, S. Ahmad, Phys. Rev. C 101, 064322 (2020) O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002) G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003) J. Leske et al., Phys. Rev. C 71, 034303 (2005) J. Leske et al., Phys. Rev. C 73, 064305 (2006) K. Moschner et al., Phys. Rev. C 82, 014301 (2010) O. Kenn et al., Phys. Rev. C 65, 034308 (2002) D. Mücher et al., Phys. Rev. C 79, 054310 (2009) S. Rai, A. Biswas, B. Mukherjee, Int. J. Mod. Phys. E 25, 1650099 (2016) E. Clément et al., Phys. Rev. C 75, 054313 (2007) E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016) A. Görgen, W. Korten, J. Phys. G Nucl. Part. Phys. 43, 024002 (2016) L.P. Gaffney et al., Nature 497, 199 (2013) P.A. Butler et al., Phys. Rev. Lett. 124, 042503 (2020) C. Morse et al., Phys. Rev. C 102, 054328 (2020) L. Morrison et al., Phys. Lett. B 838, 137675 (2023) K. Hadyńska-Klȩk et al., Phys. Rev. Lett. 117, 062501 (2016) D. Cline, Annu. Rev. of Nucl. Part. Sci. 36, 683 (1986) K. Kumar, Phys. Rev. Lett. 28, 249 (1972) K. Wrzosek-Lipska et al., Phys. Rev. C 86, 064305 (2012) K. Wrzosek-Lipska, L.P. Gaffney, J. Phys. G Nucl. Part. Phys. 43, 024012 (2016) T. Schmidt, K.L.G. Heyde, A. Blazhev, J. Jolie, Phys. Rev. C 96, 014302 (2017) J. Henderson, Phys. Rev. C 102, 054306 (2020) M. Honma, T. Otsuka, T. Mizusaki, M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009) B.A. Brown, unpublished, see also endnote (28) in B. Cheal et al., Phys. Rev. Lett. 104, 252502 (2010) N. Shimizu, T. Mizusaki, Y. Utsuno, Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019) B.A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014) B.A. Brown et al., Michigan State University Cyclotron Laboratory Report 524, (1988) B.A. Brown et al., MSU-NSCL report no. 1289 (2004) E. Caurier, F. Nowacki, Acta Phys. Pol., B 30, 705 (1999) E. Caurier et al., Phys. Rev. C 59, 2033 (1999) C.W. Johnson, W.E. Ormand, P.G. Krastev, Comput. Phys. Commun. 184, 2761 (2013) C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan (2018). arXiv preprint arXiv:1801.08432 M. Shao et al., Comput. Phys. Commun. 222, (2018) A.L. Nichols, B. Singh, J.K. Tuli, Nucl. Data Sheets 113, 973 (2012) B. Singh, J. Chen, Nucl. Data Sheets 178, 41 (2021) E. Browne, J.K. Tuli, Nucl. Data Sheets 111, 1093 (2010) E.A. McCutchan, Nucl. Data Sheets 113, 1735 (2012) G. Gürdal, E.A. Mccutchan, Nucl. Data Sheets 136, 1 (2016) S. Mukhopadhyay et al., Phys. Rev. C 95, 014327 (2017) U.S. Ghosh et al., Phys. Rev. C 100, 034314 (2019) K. Starosta et al., Phys. Rev. Lett. 99, 042503 (2007) I. Celikovic et al., Acta Phys. Pol., B 44, 375 (2013) J. Leske et al., Phys. Rev. C 72, 044301 (2005) M. Koizumi et al., Nucl. Phys. A 730, 46 (2004) S. Calinescu et al., Phys. Rev. C 104, 034318 (2021) C. Louchart et al., Phys. Rev. C 87, 054302 (2013) N.J. Stone, Atomic Data and Nucl. Data Tables 111, 1 (2016) W.K. Koo, L.J. Tassie, J. Phys. G: Nucl. Part. Phys. 7, L63 (1981) R. Neuhausen, J.W. Lightbody Jr., S.P. Fivozinsky, S. Penner, Nucl. Phys. A 263, 249 (1976) S. Salém-Vasconcelos, M.J. Bechara, J.H. Hirata, O. Dietzsch, Phys. Rev. C 38, 2439 (1988) A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958) A.S. Davydov, V.S. Rostovsky, Nucl. Phys. 12, 58 (1959) T. Bengtsson, I. Ragnarsson, S. Åberg, In Comput. Nucl. Phys. 1 page 51. Springer, (1991) J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23 (1984) T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010) J. Srebrny et al., Nucl. Phys. A 766, 25 (2006) S. Hellgartner et al., Phys. Lett. B 841, 137933 (2023) S.M. Lenzi, F. Nowacki, A. Poves, K. Sieja, Phys. Rev. C 82, 054301 (2010) A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020) K. Hadyńska-Klȩk et al., Phys. Rev. C 97, 024326 (2018)