Shell mineralogical trends in epifaunal Mesozoic bivalves and their relationship to seawater chemistry and atmospheric carbon dioxide concentration

Facies - Tập 52 - Trang 417-433 - 2006
Michael Hautmann1,2
1Institut für Paläontologie, Würzburg, Germany
2Department of Earth Sciences, University of Bristol, Bristol, UK

Tóm tắt

The Late Triassic-Early Jurassic change from aragonite- to calcite-facilitating conditions in the oceans, which was caused by a decrease of the Mg2+/Ca2+ ratio of seawater in combination with an increase of the partial pressure of carbon dioxide, also affected the shell mineralogy of epifaunal bivalves. In the “calcite sea” of the Jurassic and Cretaceous, the most diverse and abundant families of epifaunal bivalves had largely calcitic shells. Some of them, such as the Inoceramidae, acquired this shell mineralogy earlier in Earth's history but did not significantly diversify until the onset of “calcite sea” conditions. Others, however, replaced aragonite by calcite in their shell at the beginning of the Jurassic, as shown for the Ostreidae, Gryphaeidae, Pectinidae, Plicatulidae, and Buchiidae. In these families, replacement of aragonite by calcite took place in the middle and inner layer of the shell and was not associated with changes in morphology and life habit. It is therefore proposed that lower metabolic costs rather than higher resistance against dissolution or advantageous physical properties triggered the calcite expansion in their shells. This explanation fits well the observation that clades of thin-shelled bivalves were less affected by the change of seawater chemistry. Thick-shelled clades, by contrast, may suffer a severe decline in diversity until they adapt their shell mineralogy, as demonstrated by the Hippuritoida: The diversity of the Megalodontoidea, which failed to adapt their shell mineralogy to “calcite sea” conditions, dramatically decreased at the end of the Triassic, whereas their descendents became dominant carbonate producers during the Late Mesozoic after they acquired a calcitic outer shell layer in the Late Jurassic. These examples indicate that changes in the seawater chemistry and in the partial pressure of carbon dioxide are factors that influence the diversity of carbonate-secreting animals, and, as in the case of the decline of the Megalodontoidea, may contribute to mass extinctions.

Tài liệu tham khảo

Allasinaz A (1972) Revisione dei Pettinidi Triassici. Riv Ital Paleont Stratigr 78:189–428 Beerling DJ, Berner RA (2002) Biogeochemical constrains on the Triassic–Jurassic boundary carbon cycle event. Global Biogeochem Cycles 16:10-1-10-13 DOI 10.1029/2001GB001637 Berner R (1998) The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Phil Trans R Soc Lond B 353:75–82 Berner R (2004) The Phanerozoic Carbon Cycle. Oxford University Press, Oxford, New York, 150 pp Bittner A (1899) Trias-Brachiopoda and Lamellibranchiata. Palaeontologia Indica, ser. XV 3:1–76 Blomeier D, Reijmer JG (1999) Drowning of a Lower Jurassic carbonate platform: Jbel Bou Dahar, High Atlas, Morocco. Facies 41:81–110 Boehm G (1884) Beitrag zur Kenntnis der grauen Kalke in Venetien. Z dt geol Ges 36:737–782 Bøggild OB (1930) The shell structure of the Mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Naturvidenskabelig og Mathematisk Afdeling, ser. 9, 2:231–326 Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system. 1: Trace Elements. J Sediment Petrol 50:1219–1236 Carter JG (1990a) Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter JG (ed), Skeletal biomineralisation: patterns, processes and evolutionary trends, vol. I. Van Nostrand Reinhold, New York, pp 135–296 Carter JG (1990b) Shell microstructural data for the Bivalvia. In: Carter JG (ed), Skeletal biomineralisation: patterns, processes and evolutionary trends, vol. I. Van Nostrand Reinhold, New York, pp 297–411 Carter JG, Barrera E, Tevesz MJS (1998) Thermal potentation and mineralogical evolution in the Bivalvia (Mollusca). J Paleont 72:991–1011 Constanz BR (1986) Coral skeleton construction: a physico-chemically dominated process. Palaios 1:152–157 Crenshaw MA (1972) The inorganic composition of molluscan extrapallial fluid. Biol Bull 143:506–512 Currey JD (1976) Further studies on the mechanical properties of mollusc shell material. J Zool Lond 180:445–453 Currey JD, Taylor JD (1974) The mechanical behaviour of some molluscan hard tissues. J Zool Lond 173:395–406 Douglas JA (1929) A marine Triassic fauna from eastern Persia. Quart J Geol Soc 85:624–648 Emmrich H (1853) Geognostische Beobachtungen in den östlichen bayerischen Alpen und den angrenzenden österreichischen Alpen. Jb K K Geol RA Wien 4:326–394 Fabricius F (1967) Die Rät- und Lias-Oolithe der nordwestlichen Kalkalpen. Geol Rdsch 56:140–170 Flessa KW, Jablonski D (1995) Biogeography of recent marine bivalve molluscs and its implications for paleobiogeography and the geography of extinction: a progress report. Hist Biol 10:25–47 Hardie LA (1996) Secular variations in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology 24:279–283 Harper EM, Palmer TJ, Alphey JR (1997) Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geol Mag 134:403–407 Harper EM, Skelton PW (1993) The Mesozoic Marine Revolution and epifaunal bivalves. Scripta Geol, Spec Issue 2:127–153 Hautmann M (1997) Geochemische Untersuchungen im Unteren Muschelkalk bei Jena/Thüringen. Z geol Wiss 25:599–616 Hautmann M (2000) Evolution zementierender Muschelfamilien (Prospondylidae, Plicatulidae, Dimyidae und Ostreidae) im frühen Mesozoikum. Terra Nostra 00/3:42 Hautmann M (2001a) Taxonomy and phylogeny of cementing Triassic Bivalves (Families Prospondylidae, Plicatulidae, Dimyidae and Ostreidae). Palaeontology 44:339–373 Hautmann M (2001b) Die Muschelfauna der Nayband-Formation (Obertrias, Nor-Rhät) des östlichen Zentraliran. Beringeria 29:1–181 Hautmann M (2003) Mineralogical changes in the shell of epifaunal bivalves at he Triassic/Jurassic boundary. In: Michalík J (ed) IGCP 458: Triassic–Jurassic Boundary Events. Third Field Workshop, Geological Institute, Slovak Academy of Science, Bratislava, pp. 28–29 Hautmann M (2004a) Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50:257–261 Hautmann M (2004b) Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution”. Lethaia 37:165–172 Hertlein LG (1969) Family Pectinidae Rafinesque, 1815. In: Moore RC (ed), Treatise on invertebrate paleontology. Part N. Mollusca 6, Bivalvia 1, Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, pp N348–N373 Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology 30:251–254 Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: Implications fro the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756 Kennedy WJ, Morris NJ, Taylor JD (1970) The shell structure, mineralogy and relationships of the Chamacea (Bivalvia). Palaeontology 13:379–413 Kiparisova L (1936) Upper Triassic pelecypods from the Kolyma-Indigirka Land. Trans Arctic Inst 30:71–136 [in Russian] Krumbeck L (1913) Obere Trias von Buru und Misol. Palaeontographica, Suppl. IV (II):1–161 Krumbeck L (1924) Die Brachiopoden, Lamellibranchiaten und Gastropoden der Trias von Timor II. Paläontologischer Teil. Paläontologie von Timor 22:1–275 Kuss J (1983) Faziesentwicklung in proximalen Intraplattform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Ober-Trias, Nördliche Kalkalpen). Facies 9:61–172 Lakew T (1990) Microfacies and cyclic sedimentation of the Upper Triassic (Rhaetian) Calcare di Zu (Southern Alps). Facies 22:187–232 Lamarck JB (1801) Système des animaux sans vertébrates, ou Tableau général des classes, des ordres et des genres de ces animaux. Detreville, Paris, 432 pp Lowenstam HA, Weiner S (1989) On biomineralisation. Oxford University Press, New York Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:1086–1088 Malchus N (1990) Revision der Kreide-Austern (Bivalvia: Pteriomorphia) Ägyptens (Biostratigraphie, Systematik). Berl Geowiss Abh A 125:1–231 McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285:1386–1390 McHone JG (2003) Volatile emissions from Central Atlantic Magmatic Province Basalts: mass assumptions and environmental consequences. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds), The Central Atlantic Magmatic Province: Insights from fragments of Pangea, vol. 136. Geophysical Monograph Series: Washington, DC, American Geophysical Union, pp 241–254 McRoberts CA (1992) Systematics and paleobiogeography of late Triassic Gryphaea (Bivalvia) from the North American Cordillera. J Paleontol 66:28–39 McRoberts CA, Carter JG (1994) Nacre in an early gryphaeid bivalve. J Paleont 68:1405–1408 Mišík M (1997) Stratigrafické a priestorové rozmiestnenie vápencov s kalcitovými, chamositovými, hematitovými a illitovými ooidmi v Západných Karpatoch. Mineralia Slovaca 29:83–112 Morris J (1845) Description of fossils. In: de Strzelecki PE (ed), Physical description of New South Wales and Van Diemen's Land. Longman, Brown, Green and Longmans, London, pp 270–291 Morris J, Lycett J (1853) A monograph of the Mollusca from the Great Oolite, chiefly from Minchinhampton and the coast of Yorkshire. Part II. Bivalves. Palaeontographical Soc Monograph 7:1–80 Newell ND, Boyd DW (1995) Pectinoid bivalves of the Permian–Triassic crisis. Bull Am Mus Nat Hist 227:1–95 Pálfy J (2003) Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic extinction. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds), The Central Atlantic Magmatic Province: Insights from fragments of Pangea, vol. 136. Geophysical Monograph Series: Washington, DC, American Geophysical Union, pp 255–267 Pálfy J, Demény A, Haas J, Hetényi M, Orchard MJ, Vető I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic–Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050 Palmer AR (1992) Calcification in marine molluscs: How costly is it? Proc Natl Acad Sci USA 89:1379–1382 Railsback LB, Anderson TF (1987) Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas. Geology 15:1002–1005 Rouillier C (1845) Explication de la coupe géologique des environs de Moscou. Bull Soc Imp Natural de Moscou 19:359–467 Roy K, Jablonski D, Valentine JW (2000) Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proc R Soc Lond B 267:293–299 Runnegar B (1970) Eurydesma and Glendella gen. nov. (Bivalvia) in the Permian of eastern Australia. Commonw Aust, B Min Res, Geol Geophys Bull 116:83–106 Sandberg PA (1983) An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 305:19–22 Seilacher A (1954) Ökologie der triassischen Muschel Lima lineata (Schloth.) und ihrer Epöken. N Jb Geol Pal MH 1954:163–183 Sha J, Fürsich FT (1994) Bivalve faunas of eastern Heilongjiang, northeastern China. II. The Late Jurassic and Early Cretaceous buchiid fauna. Beringeria 12:3–76 Siewert W (1972) Schalenbau und Stammesgeschichte von Austern. Stuttgarter Beitr Naturkde (B) 1:1–57 Skelton PW (1991) Morphogenetic versus environmental cues for adaptive radiations. In: Schmidt-Kittler N, Vogel K (eds) Constructional morphology and evolution, Springer-Verlag, Berlin, pp 375–388 Skelton PW, Smith AB (2000) A preliminary phylogeny for rudist bivalves: sifting clades from grades. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geol Soc London Spec Publ 177, pp 97–127 Sowerby J (1815–1818) The Mineral Conchology of Great Britain, v. 2. J. Sowerby, London, pp 1–239 Sowerby J (1818–1821) The Mineral Conchology of Great Britain, v. 3. J. Sowerby, London, pp 1–186 Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144:3–19 Stanley SM, Hardie LA (1999) Hypercalcification: Paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 9:1–7 Stenzel HB (1971) Oysters. In: Moore RC (ed), Treatise on invertebrate paleontology. Part N. Mollusca 6, Bivalvia 3. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas, pp N953–N1224 Steuber T (2002) Plate tectonic control on the evolution of Cretaceous platform-carbonate production. Geology 30:259–262 Steuber T, Löser H (2000) Species richness and abundance patterns of Tethyan Cretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-eastern Mediterranean and Middle East, analysed from a palaeontological database. Palaeogeogr Palaeoclimatol Palaeoecol 162:75–104 Steuber T, Rauch M (2005) Evolution of the Mg/Ca ratio of Cretaceous seawater: Implications from the composition of biological low-Mg calcite. Mar Geol 217:199–213 Steuber T, Veizer J (2002) Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation. Geology 30:1123–1126 Stoppani A (1860–1865) Paléontologie Lombarde ou description des fossiles de Lombardie. II. Géologie et Paléontologie des couches à Avicula contorta. Joseph Bernardoni, Milan, 267 pp Taylor JD, Layman M (1972) The mechanical properties of bivalve (molluscan) shell structures. Palaeontology 15:73–87 Trechmann CT (1917) The Trias of New Zealand. Quart J Geol Soc 73:165–245 Van de Poel H, Schlager W (1994) Variations in Mesozoic-Cenozoic skeletal carbonate mineralogy. Geologie en Mijnbouw 73:31–51 Végh-Neubrandt E (1982) Triassische Megalodontaceae. Entwicklung, Stratigraphie und Palaeontologie. Akadémiai Kiadó, Budapest. Akadémiai Kiadó, Budapest, 526 p Veizer J (1983) Chemical diagenesis of carbonates: Theory and application of trace element technique. Ottawa-Carleton Centre for Geoscience Studies, Publication 06-82:1–100 von Gümbel CW (1862) Die Dachsteinbivalve (Megalodon triqueter) und ihre alpinen Verwandten. Sitzber Akad Wiss Math Naturw Kl Wien 45:326–377 von Münster G (1841) Beschreibung und Abbildung der in den Kalkmergelschichten von St. Cassian gefundenen Versteinerungen. In: Wissmann HL, von Münster G (eds), Beiträge zur Petrefaktenkunde, II, Buchner'sche Buchhandlung, Bayreuth, pp 68–152 Waller TR (1978) Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Phil Trans R Soc Lond Ser B 284:345–365 Waterhouse JB (1980) A new bivalve species (Buchiidae) from the Early Triassic of New Zealand. Alcheringa 4:1–10 Wilkinson BH (1979) Biomineralisation, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527 Yapp CJ, Poths H (1996) Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet Sci Lett 137:71–82