Sheaves on quantaloids

Remigijus Petras Gylys1
1Institute of Mathematics and Informatics, Vilnius, Lithuania

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Ambler and D. Verity, Generalized logic and the representation of rings,Appl. Cat. Structures,4, 283–296 (1996).

F. Borceux, J. Rosicky, and G. Van den Bossche, Quantales andC *-algebras,J. London Math. Soc.,40, 398–404 (1989).

F. Borceux and G. Van den Bossche, Quantales and their sheavesOrder,3, 61–87 (1986).

G. Van den Bossche, Quantaloids and non-commutative ring representations,Appl. Cat. Structures,3, 305–320 (1995).

M. P. Fourman and D. S. Scott, Sheaves and Logic, in: Applications of Sheaves, Lecture Notes in Mathematics, 753, Springer, Berlin (1979), pp. 302–401.

R. P. Gylys, Sheaves on quantaloids,LMD mokslo darbai,3, 31–38 (1999).

U. Höhle,M-valued sets and sheaves over integralcl-monoids, in:Applications of Category Theory to Fuzzy Subsets S. E. Rodabaughet al. (Eds.), Kluwer, Boston (1992), pp. 33–72.

U. Höhle, Presheaves overGL-monoids, in:Non-classical logics and their applications to fuzzy subsets (Linz 1992),Theory Decis. Lib. Ser. B Math. Statist. Methods 32, Kluwer Acad. Publ., Dordrecht (1995), pp. 127–157.

U. Höhle,GL-Quantales:Q-valued sets and their singletons,Studia Logica,61, 123–148 (1998).

F. Miraglia and U. Solitro, Sheaves over right sided idempotent quantales,L. J. of the IGPL,6, 545–600 (1998).

C. J. Mulvey and M. Nawaz, Quantales: quantal sets, in:Non-Classical Logics and their Applications to Fuzzy Subsets, U. Höhle, E.P. Klement (Eds.), Kluwer, Boston (1995), pp. 159–217.

C. J. Mulvey and J. W. Pelletier, A quantisation of the calculus of relations, in:Can. Math. Soc. Conf. Proc. 13, Amer. Math. Soc., Providence (1992), pp. 345–360.

J. W. Pelletier, Von Neumann algebras and Hilbert quantales,Appl. Categ. Structures,5, 249–264 (1997).

K. I. Rosenthal, Quantales and their applications. Pitman Research Notes in Mathematics, 234, Longman, Burnt Mill, Harlow (1990).

K. I. Rosenthal, The theory of quantaloids, Pitman Research Notes in Mathematics, 348, Longman, Burnt Mill, Harlow (1996).

R. F. C. Walters, Sheaves and Cauchy-complete categories,Cahiers Top. et Géom. Diff.,22, 283–286 (1981).