Sheaves on quantaloids
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Ambler and D. Verity, Generalized logic and the representation of rings,Appl. Cat. Structures,4, 283–296 (1996).
F. Borceux, J. Rosicky, and G. Van den Bossche, Quantales andC *-algebras,J. London Math. Soc.,40, 398–404 (1989).
G. Van den Bossche, Quantaloids and non-commutative ring representations,Appl. Cat. Structures,3, 305–320 (1995).
M. P. Fourman and D. S. Scott, Sheaves and Logic, in: Applications of Sheaves, Lecture Notes in Mathematics, 753, Springer, Berlin (1979), pp. 302–401.
R. P. Gylys, Sheaves on quantaloids,LMD mokslo darbai,3, 31–38 (1999).
U. Höhle,M-valued sets and sheaves over integralcl-monoids, in:Applications of Category Theory to Fuzzy Subsets S. E. Rodabaughet al. (Eds.), Kluwer, Boston (1992), pp. 33–72.
U. Höhle, Presheaves overGL-monoids, in:Non-classical logics and their applications to fuzzy subsets (Linz 1992),Theory Decis. Lib. Ser. B Math. Statist. Methods 32, Kluwer Acad. Publ., Dordrecht (1995), pp. 127–157.
F. Miraglia and U. Solitro, Sheaves over right sided idempotent quantales,L. J. of the IGPL,6, 545–600 (1998).
C. J. Mulvey and M. Nawaz, Quantales: quantal sets, in:Non-Classical Logics and their Applications to Fuzzy Subsets, U. Höhle, E.P. Klement (Eds.), Kluwer, Boston (1995), pp. 159–217.
C. J. Mulvey and J. W. Pelletier, A quantisation of the calculus of relations, in:Can. Math. Soc. Conf. Proc. 13, Amer. Math. Soc., Providence (1992), pp. 345–360.
J. W. Pelletier, Von Neumann algebras and Hilbert quantales,Appl. Categ. Structures,5, 249–264 (1997).
K. I. Rosenthal, Quantales and their applications. Pitman Research Notes in Mathematics, 234, Longman, Burnt Mill, Harlow (1990).
K. I. Rosenthal, The theory of quantaloids, Pitman Research Notes in Mathematics, 348, Longman, Burnt Mill, Harlow (1996).
R. F. C. Walters, Sheaves and Cauchy-complete categories,Cahiers Top. et Géom. Diff.,22, 283–286 (1981).