Sharpening diffuse interfaces with compressible fluids on unstructured meshes
Tài liệu tham khảo
VonNeumann, 1950, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232, 10.1063/1.1699639
Hirt, 1974, An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227, 10.1016/0021-9991(74)90051-5
Caramana, 1998, Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures, J. Comput. Phys., 142, 521, 10.1006/jcph.1998.5952
Glimm, 1998, Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 703, 10.1137/S1064827595293600
Dervieux, 1980, A finite element method for the simulation of a Rayleigh–Taylor instability, 145
Fedkiw, 1999, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457, 10.1006/jcph.1999.6236
Cahn, 1958, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102
Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5
Saurel, 1999, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425, 10.1006/jcph.1999.6187
Kapila, 2001, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002, 10.1063/1.1398042
Lund, 2012, A hierarchy of relaxation models for two-phase flow, SIAM J. Appl. Math., 72, 1713, 10.1137/12086368X
Abgrall, 1996, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150, 10.1006/jcph.1996.0085
Shyue, 1998, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 208, 10.1006/jcph.1998.5930
Saurel, 1999, A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115, 10.1137/S1064827597323749
Allaire, 2002, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577, 10.1006/jcph.2002.7143
Massoni, 2002, Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int. J. Heat Mass Transf., 45, 1287, 10.1016/S0017-9310(01)00238-1
Murrone, 2005, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664, 10.1016/j.jcp.2004.07.019
Saurel, 2009, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678, 10.1016/j.jcp.2008.11.002
Pelanti, 2014, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259, 331, 10.1016/j.jcp.2013.12.003
Shukla, 2010, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411, 10.1016/j.jcp.2010.06.025
Tiwari, 2013, A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252, 290, 10.1016/j.jcp.2013.06.021
Shyue, 2014, An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys., 268, 326, 10.1016/j.jcp.2014.03.010
Loubere, 2014, A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718, 10.4208/cicp.181113.140314a
Petitpas, 2009, Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations, Shock Waves, 19, 377, 10.1007/s00193-009-0217-7
Saurel, 2016, A general formulation for cavitating, boiling and evaporating flows, Comput. Fluids, 128, 53, 10.1016/j.compfluid.2016.01.004
Perigaud, 2005, A compressible flow model with capillary effects, J. Comput. Phys., 209, 139, 10.1016/j.jcp.2005.03.018
Favrie, 2009, Solid–fluid diffuse interface model in cases of extreme deformations, J. Comput. Phys., 228, 6037, 10.1016/j.jcp.2009.05.015
Ndanou, 2015, Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation, J. Comput. Phys., 295, 523, 10.1016/j.jcp.2015.04.024
Shyue, 2006, A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, J. Comput. Phys., 215, 219, 10.1016/j.jcp.2005.10.030
Youngs, 1982, Time-dependent multi-material flow with large fluid distortion, 273
Olsson, 2005, A conservative level set method for two phase flow, J. Comput. Phys., 210, 225, 10.1016/j.jcp.2005.04.007
Kokh, 2010, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 2773, 10.1016/j.jcp.2009.12.003
van Leer, 1979, Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1
Baer, 1986, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861, 10.1016/0301-9322(86)90033-9
Saurel, 2007, Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 209, 10.1007/s00193-006-0065-7
Petitpas, 2007, A relaxation-projection method for compressible flows, part II: artificial heat exchanges for multiphase shocks, J. Comput. Phys., 225, 2214, 10.1016/j.jcp.2007.03.014
Schoch, 2013, Multi-phase simulation of ammonium nitrate emulsion detonations, Combust. Flame, 160, 1883, 10.1016/j.combustflame.2013.03.033
Le Métayer, 2016, The Noble–Abel Stiffened–Gas equation of state, Phys. Fluids, 28, 10.1063/1.4945981
Le Métayer, 2004, Elaborating equations of state of a liquid and its vapor for two-phase flow models, Int. J. Therm. Sci., 43, 265, 10.1016/j.ijthermalsci.2003.09.002
Toro, 1994, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25, 10.1007/BF01414629
Barth, 1989, The design and application of upwind schemes on unstructured meshes
Sweby, 1981
Roe, 1985, Some contributions to the modelling of discontinuous flows, 163
Leonard, 1991, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Eng., 88, 17, 10.1016/0045-7825(91)90232-U
Toro, 1997
Sidilkover, 1995
Sweby, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, 10.1137/0721062
LeVeque, 2002
Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5
Harten, 1984, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal., 21, 1, 10.1137/0721001
van Leer, 1974, Towards the ultimate conservative difference scheme, II: monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361, 10.1016/0021-9991(74)90019-9
Tadmor, 1988, Convenient total variation diminishing conditions for nonlinear difference schemes, SIAM J. Numer. Anal., 25, 1002, 10.1137/0725057
Lax, 1960, Systems of conservation laws, Commun. Pure Appl. Math., 13, 217, 10.1002/cpa.3160130205
Warming, 1976, Upwind second-order difference schemes and applications in aerodynamic flows, AIAA J., 14, 1241, 10.2514/3.61457
LeVeque, 1992
Richtmyer, 1960, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13, 297, 10.1002/cpa.3160130207
Meshkov, 1969, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101, 10.1007/BF01015969
Layes, 2007, Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion, Phys. Fluids, 19, 10.1063/1.2720597
Holt, 1977, Underwater explosions, Annu. Rev. Fluid Mech., 9, 187, 10.1146/annurev.fl.09.010177.001155
Grove, 1990, Anomalous reflection of a shock wave at a fluid interface, J. Fluid Mech., 219, 313, 10.1017/S0022112090002968
Chiapolino, 2017, A simple phase transition relaxation solver for liquid–vapor flows, Int. J. Numer. Methods Fluids, 83, 583, 10.1002/fld.4282
Chiapolino, 2017, A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows, Computers and Fluids, 10.1016/j.compfluid.2017.03.022