Sharpening diffuse interfaces with compressible fluids on unstructured meshes

Journal of Computational Physics - Tập 340 - Trang 389-417 - 2017
Alexandre Chiapolino1,2, Richard Saurel3,2,4, Boniface Nkonga5
1Aix-Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, France
2RS2N, Chemin de Gaumin, Saint-Zacharie 83640, France
3Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
4IUF, University Institute of France, France
5Université Côte d'Azur, LJAD & INRIA, UMR 7351 CNRS UNS, 06108 Nice Cedex, France

Tài liệu tham khảo

VonNeumann, 1950, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232, 10.1063/1.1699639 Hirt, 1974, An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys., 14, 227, 10.1016/0021-9991(74)90051-5 Caramana, 1998, Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures, J. Comput. Phys., 142, 521, 10.1006/jcph.1998.5952 Glimm, 1998, Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 703, 10.1137/S1064827595293600 Dervieux, 1980, A finite element method for the simulation of a Rayleigh–Taylor instability, 145 Fedkiw, 1999, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457, 10.1006/jcph.1999.6236 Cahn, 1958, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102 Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5 Saurel, 1999, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425, 10.1006/jcph.1999.6187 Kapila, 2001, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002, 10.1063/1.1398042 Lund, 2012, A hierarchy of relaxation models for two-phase flow, SIAM J. Appl. Math., 72, 1713, 10.1137/12086368X Abgrall, 1996, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150, 10.1006/jcph.1996.0085 Shyue, 1998, An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 208, 10.1006/jcph.1998.5930 Saurel, 1999, A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115, 10.1137/S1064827597323749 Allaire, 2002, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577, 10.1006/jcph.2002.7143 Massoni, 2002, Proposition de méthodes et modèles Eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int. J. Heat Mass Transf., 45, 1287, 10.1016/S0017-9310(01)00238-1 Murrone, 2005, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664, 10.1016/j.jcp.2004.07.019 Saurel, 2009, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678, 10.1016/j.jcp.2008.11.002 Pelanti, 2014, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259, 331, 10.1016/j.jcp.2013.12.003 Shukla, 2010, An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411, 10.1016/j.jcp.2010.06.025 Tiwari, 2013, A diffuse interface model with immiscibility preservation, J. Comput. Phys., 252, 290, 10.1016/j.jcp.2013.06.021 Shyue, 2014, An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach, J. Comput. Phys., 268, 326, 10.1016/j.jcp.2014.03.010 Loubere, 2014, A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 718, 10.4208/cicp.181113.140314a Petitpas, 2009, Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensional computations, Shock Waves, 19, 377, 10.1007/s00193-009-0217-7 Saurel, 2016, A general formulation for cavitating, boiling and evaporating flows, Comput. Fluids, 128, 53, 10.1016/j.compfluid.2016.01.004 Perigaud, 2005, A compressible flow model with capillary effects, J. Comput. Phys., 209, 139, 10.1016/j.jcp.2005.03.018 Favrie, 2009, Solid–fluid diffuse interface model in cases of extreme deformations, J. Comput. Phys., 228, 6037, 10.1016/j.jcp.2009.05.015 Ndanou, 2015, Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation, J. Comput. Phys., 295, 523, 10.1016/j.jcp.2015.04.024 Shyue, 2006, A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, J. Comput. Phys., 215, 219, 10.1016/j.jcp.2005.10.030 Youngs, 1982, Time-dependent multi-material flow with large fluid distortion, 273 Olsson, 2005, A conservative level set method for two phase flow, J. Comput. Phys., 210, 225, 10.1016/j.jcp.2005.04.007 Kokh, 2010, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 2773, 10.1016/j.jcp.2009.12.003 van Leer, 1979, Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov's method, J. Comput. Phys., 32, 101, 10.1016/0021-9991(79)90145-1 Baer, 1986, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiph. Flow, 12, 861, 10.1016/0301-9322(86)90033-9 Saurel, 2007, Shock jump relations for multiphase mixtures with stiff mechanical relaxation, Shock Waves, 16, 209, 10.1007/s00193-006-0065-7 Petitpas, 2007, A relaxation-projection method for compressible flows, part II: artificial heat exchanges for multiphase shocks, J. Comput. Phys., 225, 2214, 10.1016/j.jcp.2007.03.014 Schoch, 2013, Multi-phase simulation of ammonium nitrate emulsion detonations, Combust. Flame, 160, 1883, 10.1016/j.combustflame.2013.03.033 Le Métayer, 2016, The Noble–Abel Stiffened–Gas equation of state, Phys. Fluids, 28, 10.1063/1.4945981 Le Métayer, 2004, Elaborating equations of state of a liquid and its vapor for two-phase flow models, Int. J. Therm. Sci., 43, 265, 10.1016/j.ijthermalsci.2003.09.002 Toro, 1994, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25, 10.1007/BF01414629 Barth, 1989, The design and application of upwind schemes on unstructured meshes Sweby, 1981 Roe, 1985, Some contributions to the modelling of discontinuous flows, 163 Leonard, 1991, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Eng., 88, 17, 10.1016/0045-7825(91)90232-U Toro, 1997 Sidilkover, 1995 Sweby, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995, 10.1137/0721062 LeVeque, 2002 Harten, 1983, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357, 10.1016/0021-9991(83)90136-5 Harten, 1984, On a class of high resolution total-variation-stable finite-difference schemes, SIAM J. Numer. Anal., 21, 1, 10.1137/0721001 van Leer, 1974, Towards the ultimate conservative difference scheme, II: monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361, 10.1016/0021-9991(74)90019-9 Tadmor, 1988, Convenient total variation diminishing conditions for nonlinear difference schemes, SIAM J. Numer. Anal., 25, 1002, 10.1137/0725057 Lax, 1960, Systems of conservation laws, Commun. Pure Appl. Math., 13, 217, 10.1002/cpa.3160130205 Warming, 1976, Upwind second-order difference schemes and applications in aerodynamic flows, AIAA J., 14, 1241, 10.2514/3.61457 LeVeque, 1992 Richtmyer, 1960, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13, 297, 10.1002/cpa.3160130207 Meshkov, 1969, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101, 10.1007/BF01015969 Layes, 2007, Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion, Phys. Fluids, 19, 10.1063/1.2720597 Holt, 1977, Underwater explosions, Annu. Rev. Fluid Mech., 9, 187, 10.1146/annurev.fl.09.010177.001155 Grove, 1990, Anomalous reflection of a shock wave at a fluid interface, J. Fluid Mech., 219, 313, 10.1017/S0022112090002968 Chiapolino, 2017, A simple phase transition relaxation solver for liquid–vapor flows, Int. J. Numer. Methods Fluids, 83, 583, 10.1002/fld.4282 Chiapolino, 2017, A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows, Computers and Fluids, 10.1016/j.compfluid.2017.03.022