Sharp pointwise gradient estimates for Riesz potentials with a bounded density

Analysis and Mathematical Physics - Tập 8 - Trang 711-730 - 2018
Vladimir G. Tkachev1
1Department of Mathematics, Linköping University, Linköping, Sweden

Tóm tắt

We establish sharp inequalities for the Riesz potential and its gradient in $$\mathbb {R}^{n}$$ and indicate their usefulness for potential analysis, moment theory and other applications.

Tài liệu tham khảo

Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For Sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964). http://people.math.sfu.ca/~cbm/aands/frameindex.htm Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975). http://projecteuclid.org/euclid.dmj/1077311348 Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-03282-4 Aheizer, N.I., Krein, M.: Some questions in the theory of moments. Translated by W. Fleming and D. Prill. Translations of Mathematical Monographs, Vol. 2. American Mathematical Society, Providence (1962) Curto, R.E., Fialkow, L.A.: Truncated \(K\)-moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005) Fraenkel, L.E.: An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511569203 Garg, R., Spector, D.: On the role of Riesz potentials in Poisson’s equation and Sobolev embeddings. Indiana Univ. Math. J. 64(6), 1697–1719 (2015). https://doi.org/10.1512/iumj.2015.64.5706 Gustafsson, B., He, C., Milanfar, P., Putinar, M.: Reconstructing planar domains from their moments. Inverse Prob. 16(4), 1053–1070 (2000). https://doi.org/10.1088/0266-5611/16/4/312 Gustafsson, B., Putinar, M.: The exponential transform: a renormalized Riesz potential at critical exponent. Indiana Univ. Math. J. 52(3), 527–568 (2003). https://doi.org/10.1512/iumj.2003.52.2304 Gustafsson, B., Putinar, M.: Hyponormal quantization of planar domains: complex orthogonal polynomials and the exponential transform. Lecture Notes in Mathematics, vol. 2199. Springer (2017) Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Bergman polynomials on an archipelago: estimates, zeros and shape reconstruction. Adv. Math. 222(4), 1405–1460 (2009). https://doi.org/10.1016/j.aim.2009.06.010 Gustafsson, B., Vasil’ev, A.: Conformal and Potential Analysis in Hele-Shaw Cells. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2006) Huang, X.: Symmetry results of positive solutions of integral equations involving Riesz potential in exterior domains and in annular domains. J. Math. Anal. Appl. 427(2), 856–872 (2015). https://doi.org/10.1016/j.jmaa.2015.02.083 Huang, X., Hong, G., Li, D.: Some symmetry results for integral equations involving Wolff potential on bounded domains. Nonlinear Anal. 75(14), 5601–5611 (2012). https://doi.org/10.1016/j.na.2012.05.007 Krein, M.G., Nudel’man, A.A.: The Markov moment problem and extremal problems. American Mathematical Society, Providence, R.I. (1977). Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, vol. 50 (1977) Lasserre, J.B.: Bounding the support of a measure from its marginal moments. Proc. Am. Math. Soc. 139(9), 3375–3382 (2011). https://doi.org/10.1090/S0002-9939-2011-10865-7 Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001). https://doi.org/10.1090/gsm/014 Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, augmented edn. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15564-2 Maz’ya, V., Shaposhnikova, T.: On pointwise interpolation inequalities for derivatives. Math. Bohem. 124(2–3), 131–148 (1999) Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. (JEMS) 13(2), 459–486 (2011). https://doi.org/10.4171/JEMS/258 Mingione, G.: Recent Advances in Nonlinear Potential Theory Trends in Contemporary Mathematics. Springer INdAM Ser., vol. 8, pp. 277–292. Springer, Cham (2014) Reichel, W.: Characterization of balls by Riesz-potentials. Ann. Mat. Pura Appl. (4) 188(2), 235–245 (2009). https://doi.org/10.1007/s10231-008-0073-6 Tkachev, V.G.: Subharmonicity of higher dimensional exponential transforms. In: Ebenfelt, P., Gustafsson, B., Khavinson, D., Putinar, M. (eds) Quadrature Domains and Their Applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel (2005) Xiao, J.: Entropy flux–electrostatic capacity–graphical mass. Proc. Am. Math. Soc. 145(2), 825–832 (2017). https://doi.org/10.1090/proc/13259