Các mô hình sắc nét của các nghiệm dương cho một số bài toán elliptic bán tuyến tính có trọng số

Springer Science and Business Media LLC - Tập 60 - Trang 1-36 - 2021
Wan-Tong Li1, Julián López-Gómez2, Jian-Wen Sun1
1School of Mathematics and Statistics Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, People’s Republic of China
2Institute of Interdisciplinary Mathematics (IMI), Department of Mathematical Analysis and Applied Mathematics, Complutense University, Madrid, Spain

Tóm tắt

Bài báo này đề cập đến bài toán elliptic bán tuyến tính $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u = \lambda m(x)u-[a(x)+\varepsilon b(x)]u^p &{}\text { trong } \Omega ,\\ Bu=0 &{}\text { trên } \partial \Omega , \end{array}\right. } \end{aligned}$$ trong đó $$p>1$$ , $$\lambda >0$$ , $$m,a,b\in C({\bar{\Omega }})$$ , với $$a \gneq 0$$ , $$b\gneq 0$$ , $$\Omega $$ là một miền hữu hạn $$C^{2}$$ trong $${\mathbb {R}}^N$$ ( $$N\ge 1$$ ), B là một toán tử biên hỗn hợp cổ điển tổng quát, và $$\varepsilon \ge 0$$ . Do đó, a(x) và b(x) có thể biến mất trên một số miền con của $$\Omega $$ và hàm trọng số m(x) có thể đổi dấu trong $$\Omega $$ . Qua bài báo này, chúng tôi luôn xem xét các nghiệm cổ điển. Đầu tiên, chúng tôi định hình sự tồn tại của các nghiệm dương cho bài toán này trong trường hợp đặc biệt khi $$\varepsilon =0$$ . Sau đó, chúng tôi điều tra các mô hình sắc nét của các nghiệm dương khi $$\varepsilon \downarrow 0$$ và $$\varepsilon \uparrow \infty $$ . Nghiên cứu của chúng tôi tiết lộ cách mà sự tồn tại của các profile sắc nét được xác định bởi hành vi của b(x).

Từ khóa


Tài liệu tham khảo

Aleja, D., Antón, I., López-Gómez, J.: Solution components in a degenerate weighted BVP. Nonlinear Anal. 192, 111690 (2020) Aleja, D., López-Gómez, J.: Dynamics of a class of advective diffusive equations in ecology. Adv. Nonlinear Stud. 15, 557–585 (2015) Álvarez-Caudevilla, P., López-Gómez, J.: Semi-classical analysis for highly degenerate potentials. Proc. Am. Math. Soc. 136, 665–675 (2008) Amann, H.: Existence of multiple solutions for nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21, 925–935 (1971) Amann, H., López-Gómez, J.: A priori bounds and multiple solutions for superlinear indefinite elliptic problems. J. Differ. Equ. 146, 336–374 (1998) Bandle, C., Marcus, M.: “Large” solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour. J. Anal. Math. 58, 9–24 (1991) Benguria, R., Brézis, H., Lieb, E.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys. 79, 167–180 (1981) Brézis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10, 55–64 (1986) Brown, K.J., Lin, S.S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980) Cano-Casanova, S., López-Gómez, J.: Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J. Differ. Equ. 178, 123–211 (2002) Cantrell, R., Cosner, C.: On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains. J. Differ. Equ. 231, 768–804 (2006) Dancer, E.N., López-Gómez, J.: Semiclassical analysis of general second order elliptic operators on bounded domains. Trans. Am. Math. Soc. 352, 3723–3742 (2000) Daners, D., López-Gómez, J.: Global dynamics of generalized logistic equations. Adv. Nonlinear Stud. 18, 217–236 (2018) Du, Y.: Spatial patterns for population models in a heterogeneous environment. Taiwanese J. Math. 8, 155–182 (2004) Du, Y., Huang, Q.: Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31, 1–18 (1999) Du, Y., Guo, Z.: The degenerate logistic model and a singularly mixed boundary blow-up problem. Discret. Contin. Dyn. Syst. 14, 1–29 (2006) Du, Y., Li, S.: Positive solutions with prescribed patterns in some simple semilinear equations. Differ. Int. Equ. 12, 805–822 (2002) Fraile, J.M., Medina, P.Koch, López-Gómez, J., Merino, S.: Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation. J. Differ. Equ. 127, 295–319 (1996) García-Melián, J., Gómez-Reñasco, R., López-Gómez, J., Sabina, J.C.: Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs. Arch. Ration. Mech. Anal. 145, 261–289 (1998) Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer, Berlin (2001) Hess, P., Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Commun. Part. Differ. Equ. 5, 999–1030 (1980) López-Gómez, J.: On linear weighted boundary value problems. In: Partial Differential Equations, Models in Physics and Biology, Mathematical Research, Vol. 82, pp. 188–203. Akademie, Berlin, (1994) López-Gómez, J.: Permanence under strong competition. WSSIAA 4, 473–488 (1995) López-Gómez, J.: The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems. J. Differ. Equ. 127, 263–294 (1996) López-Gómez, J.: Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems. Trans. Am. Math. Soc. 352, 1825–1858 (2000) López-Gómez, J.: Approaching metasolutions by solutions. Differ. Int. Equ. 14, 739–750 (2001) López-Gómez, J.: Uniqueness of radially symmetric large solutions. Discret. Contin. Dyn. Syst. (Suppl.), 677–686 (2007) López-Gómez, J.: Linear Second Order Elliptic Operators. World Scientific Publishing, Singapore (2013) López-Gómez, J.: Metasolutions of Parabolic Equations in Population Dynamics. CRC Press, Boca Raton (2016) López-Gómez, J., Maire, L., Véron, L.: General uniqueness results for large solutions. Z. Angew. Math. Phys. 71(4), 14 (2020) (Paper No. 109) López-Gómez, J., Omari, P.: Characterizing the formation of singularities in a superlinear indefinite problem related to the mean curvature operator. J. Differ. Equ. 269, 1544–1570 (2020) López-Gómez, J., Sabina, J.C.: First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs. J. Differ. Equ. 148, 47–64 (1998) Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006) Marcus, M., Véron, L.: Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 237–274 (1997) Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+\lambda u-hu^p=0\). Trans. Amer. Math. Soc. 331, 503–527 (1992) Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, Englewood Cliffs (1967) Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1974)