Sharp Lp-Moser inequality on Riemannian manifolds

Journal of Differential Equations - Tập 260 - Trang 1558-1584 - 2016
Marcos Teixeira Alves1, Jurandir Ceccon1
1Departamento de Matemática, Universidade Federal do Paraná, Caixa Postal 019081, 81531-990, Curitiba, PR, Brazil

Tài liệu tham khảo

Agueh, 2008, Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations, NoDEA Nonlinear Differential Equations Appl., 15, 457, 10.1007/s00030-008-7021-4 Bakry, 1995, Sobolev inequalities in disguise, Indiana Univ. Math. J., 44, 1033, 10.1512/iumj.1995.44.2019 Beckner, 2004, Estimates on Moser embedding, Potential Anal., 20, 345, 10.1023/B:POTA.0000009813.38619.47 Brezis, 1983, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437, 10.1002/cpa.3160360405 Brouttelande, 2003, The best-constant problem for a family of Gagliardo–Nirenberg inequalities on a compact Riemannian manifold, Proc. R. Soc. Edinb., 46, 147 Ceccon, 2016, General optimal Lp-Nash inequalities on Riemannian manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. Ceccon, 2008, Optimal Lp-Riemannian Gagliardo–Nirenberg inequalities, Math. Z., 258, 851, 10.1007/s00209-007-0202-8 Ceccon, 2013, Optimal Riemannian Lp-Gagliardo–Nirenberg inequalities revisited, J. Differential Equations, 254, 2532, 10.1016/j.jde.2012.12.013 Ceccon Chen, 2010, Optimal improved Lp-Riemannian Gagliardo–Nirenberg inequalities, Nonlinear Anal., 72, 3159, 10.1016/j.na.2009.12.009 Cordero-Erausquin, 2004, A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities, Adv. Math., 182, 307, 10.1016/S0001-8708(03)00080-X Del Pino, 2002, Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81, 847, 10.1016/S0021-7824(02)01266-7 Del Pino, 2003, The optimal Euclidean Lp-Sobolev logarithmic inequality, J. Funct. Anal., 197, 151, 10.1016/S0022-1236(02)00070-8 Druet, 1998, Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds, J. Funct. Anal., 159, 217, 10.1006/jfan.1998.3264 Druet, 1999, The best constants problem in Sobolev inequalities, Math. Ann., 314, 327, 10.1007/s002080050297 Druet, 1999, Optimal Nash's inequalities on Riemannian manifolds: the influence of geometry, Int. Math. Res. Not. IMRN, 14, 735, 10.1155/S1073792899000380 Druet, 2002, The AB program in geometric analysis: sharp Sobolev inequalities and related problems, Mem. Amer. Math. Soc., 160 L.G. Farah, Global well-posedness and blow-up for the L2-supercritical and H1-subcritical inhomogeneous nonlinear Shrödinger equation, preprint. Gentil, 2002, Ultracontractive bounds on Hamilton–Jacobi solutions, Bull. Sci. Math., 126, 507, 10.1016/S0007-4497(02)01128-4 Gentil, 2003, The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton–Jacobi equations, J. Funct. Anal., 202, 591, 10.1016/S0022-1236(03)00047-8 Grillo, 2010, On the equivalence between p-Poincaré inequalities and Lr−Lq regularization and decay estimates of certain nonlinear evolutions, J. Differential Equations, 249, 2561, 10.1016/j.jde.2010.05.022 Hebey, 1999, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, vol. 5 Kishimoto, 2013, Construction of blow-up solutions for Zakharov system on T2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 791, 10.1016/j.anihpc.2012.09.003 Moser, 1961, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14, 577, 10.1002/cpa.3160140329 Serrin, 1964, Local behavior of solutions of quasilinear equations, Acta Math., 111, 247, 10.1007/BF02391014 Tolksdorf, 1984, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 126, 10.1016/0022-0396(84)90105-0