Sharp Riesz-Fejér Inequality for Harmonic Hardy Spaces
Tóm tắt
We prove sharp version of Riesz-Fejér inequality for functions in harmonic Hardy space
$h^{p}(\mathbb {D})$
on the unit disk
$\mathbb {D}$
, for p > 1, thus extending the result from Kayumov et al. (Potential Anal. 52, 105–113, 2020) and resolving the posed conjecture.
Tài liệu tham khảo
Beckenbach, E.F.: On a theorem of Fejér and Riesz. J. London Math. Soc. 13, 82–86 (1938)
Calderón, A.P.: On theorems of M. Riesz and Zygmund. Proc. Amer. Math. Soc. 1(4), 533–535 (1950)
Fejér, L., Riesz, F.: Uber einige funktionentheoretische Ungleichungen. Math. Z. 11, 305–314 (1921)
Frazer, H.: On the moduli of regular functions. Proc. London Math. Soc. 36, 532–546 (1934)
Hollenbeck, B., Verbitsky, I.E.: Best constants for the Riesz projection. J. Funct. Anal. 175(2), 370–392 (2000). https://doi.org/10.1006/jfan.2000.3616.MR1780482
Howard, R., Schep, A.R.: Norms of positive operators on Lp spaces. Proc. Amer. Math. Soc. 109(1), 135–146 (1990)
Huber, A.: On an inequality of Fejér and Riesz. Ann. Math. 63(3), 572–587 (1956)
Kalaj, D.: On Riesz type inequalities for harmonic mappings on the unit disk. Trans. Amer. Math. Soc. 372(6), 4031–4051 (2019)
Kayumov, I.R., Ponnusamy, S., Sairam Kaliraj, A.: Riesz-Fejér inequalities for Harmonic functions. Potential Anal. 52, 105–113 (2020)
Koosis, P.: Introduction to Hp spaces, Cambridge tracts in math, 2nd edn., vol. 115. Cambridge University Press, Cambridge (1998)
Lozinski, S.: On subharmonic functions and their application to the theory of surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 8(4), 175–194 (1944)
Marković M., Melentijević P.: On the Hollenbeck-Verbitsky conjecture and M. Riesz theorem for various function spaces, preprint
Pavlović, M.: Function classes on the unit disk. An introduction, De Gruyter studies in mathematics 52. ISBN:978-3-11-028190-3 (2013)