Sharp Hessian integrability estimates for nonlinear elliptic equations: An asymptotic approach

Journal de Mathématiques Pures et Appliquées - Tập 106 - Trang 744-767 - 2016
Edgard A. Pimentel1, Eduardo V. Teixeira2
1Department of Mathematics, Universidade Federal de São Carlos, 13.560 São Carlos, SP, Brazil
2Universidade Federal do Ceará, Campus do Pici, Bloco 914, 60.455-760 Fortaleza, CE, Brazil

Tài liệu tham khảo

Araújo, 2013, Geometric approach to nonvariational singular elliptic equations, Arch. Ration. Mech. Anal., 209, 1019, 10.1007/s00205-013-0633-9 Baiocchi, 1988, General existence theorems for unilateral problems in continuum mechanics, Arch. Ration. Mech. Anal., 100, 149, 10.1007/BF00282202 Caffarelli, 1989, Interior a priori estimates for solutions of fully nonlinear equations, Ann. Math. (2), 130, 189, 10.2307/1971480 Caffarelli, 1995, Fully Nonlinear Elliptic Equations, vol. 43 Caffarelli, 1996, On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., 49, 365, 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A Caffarelli, 2003, Estimates in the generalized Campanato–John–Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., 118, 1, 10.1215/S0012-7094-03-11811-6 Dong, 2014, On the impossibility of Wp2 estimates for elliptic equations with piecewise constant coefficients, J. Funct. Anal., 267, 3963, 10.1016/j.jfa.2014.09.013 Escauriaza, 1993, W2,n a priori estimates for solutions to fully nonlinear equations, Indiana Univ. Math. J., 42, 413, 10.1512/iumj.1993.42.42019 Evans, 1982, Classical solutions of fully nonlinear, convex, second order elliptic equations, Commun. Pure Appl. Math., 35, 333, 10.1002/cpa.3160350303 Evers, 1979 Jensen, 1988, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Ration. Mech. Anal., 101, 1, 10.1007/BF00281780 John, 1961, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14, 415, 10.1002/cpa.3160140317 Krylov, 1982, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR, Ser. Mat., 46, 487 Krylov, 1983, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR, Ser. Mat., 47, 75 Krylov, 1979, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, 245, 18 Krylov, 1980, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR, Ser. Mat., 44, 161 Nadirashvili, 2007, Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal., 17, 1283, 10.1007/s00039-007-0626-7 Nadirashvili, 2008, Singular viscosity solutions to fully nonlinear elliptic equations, J. Math. Pures Appl. (9), 89, 107, 10.1016/j.matpur.2007.10.004 Nadirashvili, 2011, Octonions and singular solutions of Hessian elliptic equations, Geom. Funct. Anal., 21, 483, 10.1007/s00039-011-0112-0 Ricarte, 2011, Fully nonlinear singularly perturbed equations and asymptotic free boundaries, J. Funct. Anal., 261, 1624, 10.1016/j.jfa.2011.05.015 Rockafellar, 1970, Convex Analysis, vol. 28 Silvestre, 2016, Regularity estimates for fully nonlinear equations which are asymptotically convex Spruck, 1995, Fully nonlinear elliptic equations and applications to geometry, 1145 Teixeira, 2014, Universal moduli of continuity for solutions to fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., 211, 911, 10.1007/s00205-013-0688-7 Teixeira, 2014, A geometric tangential approach to sharp regularity for degenerate evolution equations, Anal. PDE, 7, 733, 10.2140/apde.2014.7.733 Wang, 2013, Singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems, Am. J. Math., 135, 1157, 10.1353/ajm.2013.0043 Yuan, 2002, A Bernstein problem for special Lagrangian equations, Invent. Math., 150, 117, 10.1007/s00222-002-0232-0