Sharp Hardy Inequalities in Star-shaped Domains with Double Singular Kernels

Mediterranean Journal of Mathematics - Tập 14 - Trang 1-13 - 2016
Alexander Fabricant1, Nikolai Kutev1, Tsviatko Rangelov1
1Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Tóm tắt

Improved Hardy inequality with double singular kernel in bounded, star-shaped domains $$\Omega \subset R^n$$ is proved. The case of singularity at an interior point and on the boundary of the domain is considered. The Hardy constant is optimal and the inequality is sharp due to the additional term.

Tài liệu tham khảo

Ancona, A.: On strong barriers and inequality of Hardy for domains in \( {R}^n\). J. Lond. Math. Soc. 34, 274–290 (1986) Avkhadiev, F., Laptev, A.: Hardy inequalities for nonconvex domains. International Mathematical Series. Around Research of Vladimir Maz’ya, I, vol. 11, pp. 1–12. Springer, New York (2010) Barbatis, G., Filippas, S., Tertikas, A.: Series expantion for \( {L}^p\) Hardy inequalities. Ind. Univ. Math. J. 52, 171–189 (2003) Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \( {L}^p\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356, 2169–2196 (2003) Brezis, H., Marcus, M.: Hardy’s inequality revised. Ann. Sci. Norm. Pisa 25, 217–237 (1997) Davies, E.: The Hardy constant. Quart. J. Math. Oxf. 2(46), 417–431 (1995) Davies, E.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 57–67 (1998) Dávila, J., Dupaigne, L.: Hardy-type inequalities. J. Eur. Math. Soc. 6, 335–365 (2004) Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Rhode Island (1998) Fabricant, A., Kutev, N., Rangelov, T.: Hardy-type inequality with double singular kernels. Cent. Eur. J. Math. 11, 1689–1697 (2013) Fabricant, A., Kutev, N., Rangelov, T.: Note on sharp Hardy-type inequality. Mediterr. J. Math. 11, 31–44 (2014) Filippas, S., Maz’ya, V., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. 25, 491–501 (2006) Flekinger, J., Harell, M.E., Thelin, F.: Boundary behaviour and esimates for solutions containing the p- Laplacian. Electr. J. Differ. Equ. 38, 1–19 (1999) Gazzola, F., Grunau, H., Mitidieri, E.: Hardy inequalities with optimal constant and remaider terms. Trans. Am. Math. Soc. 356, 2149–2168 (2004) Hajlasz, P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127, 417–423 (1999) Hardy, G.: Note on a theorem of Hilbert. Math. A. 6, 314–317 (1920) Hardy, G.: An inequality between integrals. Messenger Math. 54, 150–156 (1925) Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardy’s inequality. J. Funct. Anal. 189, 539–548 (2002) Ioku, N., Ishiwata, M.: A scale invariance form of a critical Hardy inequality. Int. Math. Res. Note IMRN 18, 8830–8846 (2015) Kinnunen, J., Korte, R.: Characterizations for Hardy’s inequality. International Mathematical Series. Around Research of Vladimir Maz’ya, I, vol 11, pp. 239–254. Springer, New York (2010) Koskela, P., Lehrback, J.: Weighted pointwise Hardy inequalities. J. Lond. Math. Soc. 79, 757–779 (2009) Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985) Lewis, J.L.: Uniformly fat sets. Trans. Am. Math. Soc. 308, 177–196 (1988) Maz’ja, V.G.: Sobolev Spaces. Springer, Berlin (1985) Neĉas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Sci. Norm. Sup Pisa 16, 305–326 (1962) Opic, B., Kufner, A.: Hardy-type Inequalities. Pitman Research Notes in Math, vol. 219. Longman, Harlow (1990). Pinchover, Y., Tintarev, K.: Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy’s inequality. Ind. Univ. Math. J. 54, 1061–1074 (2005) Takahashi, F.: A simple proof of Hardy‘s inequality in a limiting case. Arch. Der. Math. 104, 77–82 (2015) Tidblom, J.: A geometrical version of Hardy’s inequality for \(W^{1, p}_0(\Omega )\). Proc. Am. Math. Soc. 132, 2265–2271 (2004) Vázquez, J., Zuazua, E.: The Hardy inquality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000) Wannebo, A.: Hardy inequalities and imbedding in domains generalizing \( {C}^{0,\lambda }\) domains. Proc. Am. Math. Soc. 122, 1181–1190 (1994)