Shared Functions of Perirhinal and Parahippocampal Cortices: Implications for Cognitive Aging

Trends in Neurosciences - Tập 41 - Trang 349-359 - 2018
Sara N. Burke1,2, Leslie S. Gaynor1,3, Carol A. Barnes4,5,6,7, Russell M. Bauer3, Jennifer L. Bizon1, Erik D. Roberson8, Lee Ryan4,6
1McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
2Institute On Aging, University of Florida, Gainesville, FL, USA
3Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
4Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
5Division of Neural Systems, Memory, and Aging, University of Arizona, Tucson, AZ, USA
6Department of Psychology, University of Arizona, Tucson, AZ, USA
7Department of Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA
8Evelyn F. McKnight Brain Institute, Alzheimer’s Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, AL, USA

Tài liệu tham khảo

Samson, 2013, Impact of aging brain circuits on cognition, Eur. J. Neurosci., 37, 1903, 10.1111/ejn.12183 Barense, 2010, Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint, Hippocampus, 20, 389 Mormann, 2017, Scene-selective coding by single neurons in the human parahippocampal cortex, Proc. Natl. Acad. Sci. U. S. A., 114, 1153, 10.1073/pnas.1608159113 Ritchey, 2015, Cortico-hippocampal systems involved in memory and cognition: the PMAT framework, Prog. Brain Res., 219, 45, 10.1016/bs.pbr.2015.04.001 Burwell, 1998, Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat, J. Comp. Neurol., 398, 179, 10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y Lavenex, 2004, Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections, J. Comp. Neurol., 472, 371, 10.1002/cne.20079 Burwell, 1998, Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex, J. Comp. Neurol., 391, 293, 10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X Wang, 2016, Functional connectivity based parcellation of the human medial temporal lobe, Neurobiol. Learn. Mem., 134, 123, 10.1016/j.nlm.2016.01.005 Ranganath, 2012, Two cortical systems for memory-guided behaviour, Nat. Rev. Neurosci., 13, 713, 10.1038/nrn3338 Fanselow, 2010, Are the dorsal and ventral hippocampus functionally distinct structures?, Neuron, 65, 7, 10.1016/j.neuron.2009.11.031 Strange, 2014, Functional organization of the hippocampal longitudinal axis, Nat. Rev. Neurosci., 15, 655, 10.1038/nrn3785 Libby, 2012, Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging, J. Neurosci., 32, 6550, 10.1523/JNEUROSCI.3711-11.2012 Suzuki, 1994, Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents, J. Comp. Neurol., 350, 497, 10.1002/cne.903500402 Connor, 2017, Integration of objects and space in perception and memory, Nat. Neurosci., 20, 1493, 10.1038/nn.4657 Knierim, 2014, Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames, Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 10.1098/rstb.2013.0369 van Strien, 2009, The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network, Nat. Rev. Neurosci., 10, 272, 10.1038/nrn2614 Binicewicz, 2016, Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat, Brain Struct. Funct., 221, 1607, 10.1007/s00429-015-0992-0 Insausti, 1997, Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents, Hippocampus, 7, 146, 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L Zhuo, 2016, Connectivity profiles reveal a transition subarea in the parahippocampal region that integrates the anterior temporal-posterior medial systems, J. Neurosci., 36, 2782, 10.1523/JNEUROSCI.1975-15.2016 Suzuki, 1994, Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices, J. Neurosci., 14, 1856, 10.1523/JNEUROSCI.14-03-01856.1994 Insausti, 2008, Entorhinal cortex of the monkey. IV. Topographical and laminar organization of cortical afferents, J. Comp. Neurol., 509, 608, 10.1002/cne.21753 Insausti, 1987, The entorhinal cortex of the monkey. II. Cortical afferents, J. Comp. Neurol., 264, 356, 10.1002/cne.902640306 Bos, 2017, Perirhinal firing patterns are sustained across large spatial segments of the task environment, Nat. Commun., 8, 15602, 10.1038/ncomms15602 Furtak, 2012, Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination, Neuron, 76, 976, 10.1016/j.neuron.2012.10.039 Burke, 2012, Representation of three-dimensional objects by the rat perirhinal cortex, Hippocampus, 22, 2032, 10.1002/hipo.22060 Deshmukh, 2012, Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex, Hippocampus, 22, 2045, 10.1002/hipo.22046 Bucci, 2002, Contextual fear discrimination is impaired by damage to the postrhinal or perirhinal cortex, Behav. Neurosci., 116, 479, 10.1037/0735-7044.116.3.479 Bucci, 2000, Contributions of postrhinal and perirhinal cortex to contextual information processing, Behav. Neurosci., 114, 882, 10.1037/0735-7044.114.5.882 Norman, 2005, Dissociable effects of lesions to the perirhinal cortex and the postrhinal cortex on memory for context and objects in rats, Behav. Neurosci., 119, 557, 10.1037/0735-7044.119.2.557 Barker, 2015, Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal–cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices, Cereb. Cortex, 25, 472, 10.1093/cercor/bht245 Hernandez, 2017, Medial prefrontal–perirhinal cortical communication is necessary for flexible response selection, Neurobiol. Learn. Mem., 137, 36, 10.1016/j.nlm.2016.10.012 Ramos, 2017, Perirhinal cortex involvement in allocentric spatial learning in the rat: evidence from doubly marked tasks, Hippocampus, 27, 507, 10.1002/hipo.22707 Park, 2017, Interactions between stimulus and response types are more strongly represented in the entorhinal cortex than in its upstream regions in rats, Elife, 6, 10.7554/eLife.32657 Heimer-McGinn, 2017, Disconnection of the perirhinal and postrhinal cortices impairs recognition of objects in context but not contextual fear conditioning, J. Neurosci., 37, 4819, 10.1523/JNEUROSCI.0254-17.2017 Bar, 2008, Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se, J. Neurosci., 28, 8539, 10.1523/JNEUROSCI.0987-08.2008 Hayes, 2007, The effect of scene context on episodic object recognition: parahippocampal cortex mediates memory encoding and retrieval success, Hippocampus, 17, 873, 10.1002/hipo.20319 Memel, 2017, Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation, Neuropsychologia, 100, 195, 10.1016/j.neuropsychologia.2017.04.031 Moses, 2006, A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function, Hippocampus, 16, 43, 10.1002/hipo.20131 Oliva, 2007, The role of context in object recognition, Trends Cogn. Sci., 11, 520, 10.1016/j.tics.2007.09.009 Berron, 2018, Age-related functional changes in domain-specific medial temporal lobe pathways, Neurobiol. Aging, 65, 86, 10.1016/j.neurobiolaging.2017.12.030 Gaffan, 1994, Scene-specific memory for objects: a model of episodic memory impairment in monkeys with fornix transection, J. Cogn. Neurosci., 6, 305, 10.1162/jocn.1994.6.4.305 Euston, 2012, The role of medial prefrontal cortex in memory and decision making, Neuron, 76, 1057, 10.1016/j.neuron.2012.12.002 Paz, 2007, Learning-related facilitation of rhinal interactions by medial prefrontal inputs, J. Neurosci., 27, 6542, 10.1523/JNEUROSCI.1077-07.2007 Lavenex, 2004, Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections, J. Comp. Neurol., 472, 371, 10.1002/cne.20079 Agster, 2013, Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat, Behav. Brain Res., 254, 50, 10.1016/j.bbr.2013.07.005 Witter, 2000, Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways, Hippocampus, 10, 398, 10.1002/1098-1063(2000)10:4<398::AID-HIPO6>3.0.CO;2-K Killian, 2012, A map of visual space in the primate entorhinal cortex, Nature, 491, 761, 10.1038/nature11587 Ahn, 2017, Neural correlates of both perception and memory for objects in the rodent perirhinal cortex, Cereb. Cortex, 1 Burke, 2011, The influence of objects on place field expression and size in distal hippocampal CA1, Hippocampus, 21, 783, 10.1002/hipo.20929 Baldassano, 2013, Differential connectivity within the parahippocampal place area, Neuroimage, 75, 228, 10.1016/j.neuroimage.2013.02.073 Viskontas, 2016, Responses of neurons in the medial temporal lobe during encoding and recognition of face-scene pairs, Neuropsychologia, 90, 200, 10.1016/j.neuropsychologia.2016.07.014 Pilkiw, 2017, Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex, Elife, 6, 10.7554/eLife.28611 Wilson, 2013, Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory, Hippocampus, 23, 1280, 10.1002/hipo.22165 Scaplen, 2017, Inactivation of the lateral entorhinal area increases the influence of visual cues on hippocampal place cell activity, Front. Syst. Neurosci., 11, 40, 10.3389/fnsys.2017.00040 Koen, 2016, Recollection, not familiarity, decreases in healthy ageing: converging evidence from four estimation methods, Memory, 24, 75, 10.1080/09658211.2014.985590 Ryan, 2012, Age-related impairment in a complex object discrimination task that engages perirhinal cortex, Hippocampus, 22, 1978, 10.1002/hipo.22069 Daselaar, 2006, Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study, Cereb. Cortex, 16, 1771, 10.1093/cercor/bhj112 Burke, 2014, Advanced age dissociates dual functions of the perirhinal cortex, J. Neurosci., 34, 467, 10.1523/JNEUROSCI.2875-13.2014 Maurer, 2017, Attenuated activity across multiple cell types and reduced monosynaptic connectivity in the aged perirhinal cortex, J. Neurosci., 37, 8965, 10.1523/JNEUROSCI.0531-17.2017 Moyer, 2011, Aging-related changes in calcium-binding proteins in rat perirhinal cortex, Neurobiol. Aging, 32, 1693, 10.1016/j.neurobiolaging.2009.10.001 Devlin, 2007, Perirhinal contributions to human visual perception, Curr. Biol., 17, 1484, 10.1016/j.cub.2007.07.066 Bartko, 2007, Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks, Learn. Mem., 14, 821, 10.1101/lm.749207 Burke, 2011, Age-associated deficits in pattern separation functions of the perirhinal cortex: a cross-species consensus, Behav. Neurosci., 125, 836, 10.1037/a0026238 Johnson, 2017, Age-related impairments in discriminating perceptually similar objects parallel those observed in humans, Hippocampus, 27, 759, 10.1002/hipo.22729 Gomez-Chacon, 2015, Altered perirhinal cortex activity patterns during taste neophobia and their habituation in aged rats, Behav. Brain Res., 281, 245, 10.1016/j.bbr.2014.12.020 de Curtis, 2004, The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus, Prog. Neurobiol., 74, 101, 10.1016/j.pneurobio.2004.08.005 Maurer, 2017, Age-related changes in lateral entorhinal and CA3 neuron allocation predict poor performance on object discrimination, Front. Syst. Neurosci., 11, 49, 10.3389/fnsys.2017.00049 Devitt, 2016, False memories with age: neural and cognitive underpinnings, Neuropsychologia, 91, 346, 10.1016/j.neuropsychologia.2016.08.030 McDonough, 2014, Memory’s aging echo: age-related decline in neural reactivation of perceptual details during recollection, Neuroimage, 98, 346, 10.1016/j.neuroimage.2014.05.012 Stark, 2013, A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment, Neuropsychologia, 51, 2442, 10.1016/j.neuropsychologia.2012.12.014 Stark, 2015, Stability of age-related deficits in the mnemonic similarity task across task variations, Behav. Neurosci., 129, 257, 10.1037/bne0000055 Stark, 2017, Age-related deficits in the mnemonic similarity task for objects and scenes, Behav. Brain Res., 333, 109, 10.1016/j.bbr.2017.06.049 Yassa, 2011, Age-related memory deficits linked to circuit-specific disruptions in the hippocampus, Proc. Natl. Acad. Sci. U. S. A., 108, 8873, 10.1073/pnas.1101567108 Yassa, 2011, Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults, Hippocampus, 21, 968 Thome, 2016, Memory impairment in aged primates is associated with region-specific network dysfunction, Mol. Psychiatry, 21, 1257, 10.1038/mp.2015.160 Wilson, 2005, Age-associated alterarions in place cells are subregion specific, J. Neurosci., 25, 6877, 10.1523/JNEUROSCI.1744-05.2005 Arias-Cavieres, 2017, Aging Impairs hippocampal-dependent recognition memory and LTP and prevents the associated RyR up-regulation, Front. Aging Neurosci., 9, 111, 10.3389/fnagi.2017.00111 Reagh, 2016, Greater loss of object than spatial mnemonic discrimination in aged adults, Hippocampus, 26, 417, 10.1002/hipo.22562 Robin, 2017, Familiar real-world spatial cues provide memory benefits in older and younger adults, Psychol. Aging, 32, 210, 10.1037/pag0000162 Yoder, 2014, Characterizing olfactory perceptual similarity using carbon chain discrimination in Fischer 344 rats, Chem. Senses, 39, 323, 10.1093/chemse/bju001 Yoder, 2017, Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning, Neurobiol. Aging, 53, 122, 10.1016/j.neurobiolaging.2017.01.023 Winters, 2010, A distributed cortical representation underlies crossmodal object recognition in rats, J. Neurosci., 30, 6253, 10.1523/JNEUROSCI.6073-09.2010 Burwell, 2001, Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat, J. Comp. Neurol., 437, 17, 10.1002/cne.1267 Suzuki, 2003, Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe, Neuroscience, 120, 893, 10.1016/S0306-4522(03)00281-1 Navarro Schröder, 2015, Functional topography of the human entorhinal cortex, Elife, 4, 10.7554/eLife.06738 Maass, 2015, Functional subregions of the human entorhinal cortex, Elife, 4, 10.7554/eLife.06426 Yoo, 2017, Functional double dissociation within the entorhinal cortex for visual scene-dependent choice behavior, Elife, 6 Reagh, 2014, Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans, Proc. Natl. Acad. Sci. U. S. A., 111, E4264, 10.1073/pnas.1411250111 Reagh, 2017, Selective vulnerabilities and biomarkers in neurocognitive aging, F1000Research, 6, 491, 10.12688/f1000research.10652.1 Reagh, 2016, Greater loss of object than spatial mnemonic discrimination in aged adults, Hippocampus, 26, 417, 10.1002/hipo.22562 Khan, 2014, Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer’s disease, Nat. Neurosci., 17, 304, 10.1038/nn.3606 Braak, 2006, Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry, Acta Neuropathol., 112, 389, 10.1007/s00401-006-0127-z Marks, 2017, Tau and β-amyloid are associated with medial temporal lobe structure, function, and memory encoding in normal aging, J. Neurosci., 37, 3192, 10.1523/JNEUROSCI.3769-16.2017 Sperling, 2009, Amyloid deposition is associated with impaired default network function in older persons without dementia, Neuron, 63, 178, 10.1016/j.neuron.2009.07.003 Huber, 2018, Cognitive decline in preclinical Alzheimer’s disease: amyloid-beta versus tauopathy, J. Alzheimers Dis., 61, 265, 10.3233/JAD-170490 Suzuki, 2003, Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization, J. Comp. Neurol., 463, 67, 10.1002/cne.10744 Burwell, 1995, Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain, Hippocampus, 5, 390, 10.1002/hipo.450050503