Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease
Tài liệu tham khảo
Powers, 2013, Diversity in the origins of proteostasis networks--a driver for protein function in evolution, Nat. Rev. Mol. Cell Biol., 14, 237, 10.1038/nrm3542
Sala, 2017, Shaping proteostasis at the cellular, tissue, and organismal level, J. Cell Biol., 216, 1231, 10.1083/jcb.201612111
Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328
Zheng, 2017, Ubiquitin ligases: structure, function, and regulation, Annu. Rev. Biochem., 86, 129, 10.1146/annurev-biochem-060815-014922
Scheffner, 2014, Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects, Biochim. Biophys. Acta, 1843, 61, 10.1016/j.bbamcr.2013.03.024
Dove, 2016, Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms, EMBO Rep., 17, 1221, 10.15252/embr.201642641
Fukuda, 2017, Proteolysis regulates cardiomyocyte maturation and tissue integration, Nat. Commun., 8, 10.1038/ncomms14495
Chan, 2013, Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner, Cell Stem Cell, 12, 587, 10.1016/j.stem.2013.03.004
Metais, 2018, Asb2alpha-filamin A axis is essential for actin cytoskeleton remodeling during heart development, Circ. Res., 122, e34, 10.1161/CIRCRESAHA.117.312015
Willis, 2014, Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo, Cell Biochem. Funct., 32, 39, 10.1002/cbf.2969
McElhinny, 2004, Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development, J. Cell Sci., 117, 3175, 10.1242/jcs.01158
Shimizu, 2017, The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes, Elife, 6, 10.7554/eLife.27955
Chal, 2017, Making muscle: skeletal myogenesis in vivo and in vitro, Development, 144, 2104, 10.1242/dev.151035
Boutet, 2007, Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors, Cell, 130, 349, 10.1016/j.cell.2007.05.044
Boutet, 2010, Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors, Mol. Cell, 40, 749, 10.1016/j.molcel.2010.09.029
Bustos, 2015, NEDD4 regulates PAX7 levels promoting activation of the differentiation program in skeletal muscle precursors, Stem Cells, 33, 3138, 10.1002/stem.2125
Lagirand-Cantaloube, 2009, Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo, PLoS One, 4, 10.1371/journal.pone.0004973
Noy, 2012, HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation, Biochem. Biophys. Res. Commun., 418, 408, 10.1016/j.bbrc.2012.01.045
Li, 2015, A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation, Elife, 4, 10.7554/eLife.08536
Nastasi, 2004, Ozz-E3, a muscle-specific ubiquitin ligase, regulates beta-catenin degradation during myogenesis, Dev. Cell, 6, 269, 10.1016/S1534-5807(04)00020-6
Campos, 2010, Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development, PLoS One, 5, 10.1371/journal.pone.0009866
Centner, 2001, Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain, J. Mol. Biol., 306, 717, 10.1006/jmbi.2001.4448
Cohen, 2009, During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation, J. Cell Biol., 185, 1083, 10.1083/jcb.200901052
Kedar, 2004, Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I, Proc. Natl. Acad. Sci. U. S. A., 101, 18135, 10.1073/pnas.0404341102
Polge, 2018, A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate, J. Cachexia. Sarcopenia Muscle, 9, 129, 10.1002/jcsm.12249
Witt, 2005, MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination, J. Mol. Biol., 350, 713, 10.1016/j.jmb.2005.05.021
Willis, 2009, Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo, Circ. Res., 105, 80, 10.1161/CIRCRESAHA.109.194928
Spencer, 2000, Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein, J. Cell Biol., 150, 771, 10.1083/jcb.150.4.771
Fielitz, 2007, Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction, Proc. Natl. Acad. Sci. U. S. A., 104, 4377, 10.1073/pnas.0611726104
Cohen, 2012, Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy, J. Cell Biol., 198, 575, 10.1083/jcb.201110067
Volodin, 2017, Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization, Proc. Natl. Acad. Sci. U. S. A., 114, E1375, 10.1073/pnas.1612988114
Hol, 2017, Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin, Cold Spring Harb. Perspect. Biol., 9, a021642, 10.1101/cshperspect.a021642
Chen, 2005, Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake, Circ. Res., 97, 1018, 10.1161/01.RES.0000189262.92896.0b
Genschik, 2013, The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications, EMBO J., 32, 2307, 10.1038/emboj.2013.173
Skaar, 2014, SCF ubiquitin ligase-targeted therapies, Nat. Rev. Drug Discov., 13, 889, 10.1038/nrd4432
Bodine, 2001, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, 294, 1704, 10.1126/science.1065874
Li, 2004, Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex, J. Clin. Invest., 114, 1058, 10.1172/JCI200422220
Bodine, 2014, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1, Am. J. Physiol. Endocrinol. Metab., 307, E469, 10.1152/ajpendo.00204.2014
Mearini, 2010, Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms, Cardiovasc. Res., 85, 357, 10.1093/cvr/cvp348
Papizan, 2018, Cullin-3-RING ubiquitin ligase activity is required for striated muscle function in mice, J. Biol. Chem., 293, 8802, 10.1074/jbc.RA118.002104
Greenberg, 2008, Krp1 (sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes, Exp. Cell Res., 314, 1177, 10.1016/j.yexcr.2007.12.009
Ramirez-Martinez, 2017, KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination, Elife, 6, 10.7554/eLife.26439
Lange, 2012, Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover, Mol. Biol. Cell, 23, 2490, 10.1091/mbc.e12-01-0052
Thottakara, 2015, The E3 ubiquitin ligase Asb2beta is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation, J. Mol. Cell. Cardiol., 87, 214, 10.1016/j.yjmcc.2015.08.020
Hellerschmied, 2018, UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins, Nat. Commun., 9, 484, 10.1038/s41467-018-02924-7
Koegl, 1999, A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96, 635, 10.1016/S0092-8674(00)80574-7
D’Cruz, 2016, PDLIM7 is a novel target of the ubiquitin ligase Nedd4-1 in skeletal muscle, Biochem. J., 473, 267, 10.1042/BJ20150222
Guy, 1999, The PDZ domain of the LIM protein enigma binds to beta-tropomyosin, Mol. Biol. Cell, 10, 1973, 10.1091/mbc.10.6.1973
Wing, 2013, Deubiquitinases in skeletal muscle atrophy, Int. J. Biochem. Cell Biol., 45, 2130, 10.1016/j.biocel.2013.05.002
Wing, 2016, Deubiquitinating enzymes in skeletal muscle atrophy – an essential role for USP19, Int. J. Biochem. Cell Biol., 79, 462, 10.1016/j.biocel.2016.07.028
Valero, 2001, Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25, Genome Biol., 2, 10.1186/gb-2001-2-10-research0043
Bosch-Comas, 2006, The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins, Cell. Mol. Life Sci., 63, 723, 10.1007/s00018-005-5533-1
Hu, 2018, Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury, J. Clin. Invest., 128, 5294, 10.1172/JCI98287
Gavriilidis, 2018, The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle, Nat. Cell Biol., 20, 198, 10.1038/s41556-017-0024-9
Schoser, 2005, Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H, Ann. Neurol., 57, 591, 10.1002/ana.20441
Gupta, 2014, Kelch proteins: emerging roles in skeletal muscle development and diseases, Skelet. Muscle, 4, 11, 10.1186/2044-5040-4-11
Johansen, 2011, Selective autophagy mediated by autophagic adapter proteins, Autophagy, 7, 279, 10.4161/auto.7.3.14487
Rogov, 2014, Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy, Mol. Cell, 53, 167, 10.1016/j.molcel.2013.12.014
Zheng, 2011, Proteasome malfunction activates macroautophagy in the heart, Am. J. Cardiovasc. Dis., 1, 214
Tannous, 2008, Autophagy is an adaptive response in desmin-related cardiomyopathy, Proc. Natl. Acad. Sci. U. S. A., 105, 9745, 10.1073/pnas.0706802105
Zheng, 2011, Autophagy and p62 in cardiac proteinopathy, Circ. Res., 109, 296, 10.1161/CIRCRESAHA.111.244707
Su, 2015, COP9 signalosome controls the degradation of cytosolic misfolded proteins and protects against cardiac proteotoxicity, Circ. Res., 117, 956, 10.1161/CIRCRESAHA.115.306783
Zhang, 2014, HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress, Nat. Commun., 5, 3430, 10.1038/ncomms4430
Bedard, 2015, Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting, FASEB J., 29, 3889, 10.1096/fj.15-270579
Jin, 2016, USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1, EMBO J., 35, 866, 10.15252/embj.201593596
Platta, 2012, Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1, Biochem. J., 441, 399, 10.1042/BJ20111424
Zaglia, 2014, Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy, J. Clin. Invest., 124, 2410, 10.1172/JCI66339
Liu, 2016, Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination, Mol. Cell, 61, 84, 10.1016/j.molcel.2015.11.001
Kaushik, 2018, The coming of age of chaperone-mediated autophagy, Nat. Rev. Mol. Cell Biol., 19, 365, 10.1038/s41580-018-0001-6
Arndt, 2010, Chaperone-assisted selective autophagy is essential for muscle maintenance, Curr. Biol., 20, 143, 10.1016/j.cub.2009.11.022
Selcen, 2009, Mutation in BAG3 causes severe dominant childhood muscular dystrophy, Ann. Neurol., 65, 83, 10.1002/ana.21553
Behl, 2016, Breaking BAG: the co-chaperone BAG3 in health and disease, Trends Pharmacol. Sci., 37, 672, 10.1016/j.tips.2016.04.007
Luders, 2000, The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome, J. Biol. Chem., 275, 4613, 10.1074/jbc.275.7.4613
Demand, 2001, Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling, Curr. Biol., 11, 1569, 10.1016/S0960-9822(01)00487-0
Gazda, 2013, The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans, Cell, 152, 183, 10.1016/j.cell.2012.12.025
Wang, 2011, Proteasome functional insufficiency in cardiac pathogenesis, Am. J. Physiol. Heart Circ. Physiol., 301, H2207, 10.1152/ajpheart.00714.2011
Li, 2017, Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy, J. Mol. Cell. Cardiol., 102, 53, 10.1016/j.yjmcc.2016.11.013
Garcia-Prat, 2016, Autophagy maintains stemness by preventing senescence, Nature, 529, 37, 10.1038/nature16187
Wertz, 2019, From discovery to bedside: targeting the ubiquitin system, Cell Chem Biol, 26, 156, 10.1016/j.chembiol.2018.10.022
Yin, 2015, Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure, Biochim. Biophys. Acta, 1852, 47, 10.1016/j.bbadis.2014.11.003
Fielitz, 2007, Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3, J. Clin. Invest., 117, 2486, 10.1172/JCI32827
Clemen, 2013, Desminopathies: pathology and mechanisms, Acta Neuropathol., 125, 47, 10.1007/s00401-012-1057-6
Garg, 2014, KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy, J. Clin. Invest., 124, 3529, 10.1172/JCI74994
Sambuughin, 2010, Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores, Am. J. Hum. Genet., 87, 842, 10.1016/j.ajhg.2010.10.020
Gupta, 2013, Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy, Am. J. Hum. Genet., 93, 1108, 10.1016/j.ajhg.2013.10.020
Buckingham, 2017, Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle, Proc. Natl. Acad. Sci. U. S. A., 114, 5830, 10.1073/pnas.1610605114
Sampath, 2018, Myoblast fusion confusion: the resolution begins, Skelet. Muscle, 8, 3, 10.1186/s13395-017-0149-3
Schiaffino, 2015, Developmental myosins: expression patterns and functional significance, Skelet. Muscle, 5, 22, 10.1186/s13395-015-0046-6
Sanger, 2010, Assembly and dynamics of myofibrils, J. Biomed. Biotechnol., 2010, 858606, 10.1155/2010/858606
Hideshima, 2001, The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res., 61, 3071
Kortuem, 2013, Carfilzomib, Blood, 121, 893, 10.1182/blood-2012-10-459883
Vogl, 2017, Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma, Leuk. Lymphoma, 58, 1872, 10.1080/10428194.2016.1263842
Reneau, 2017, Cardiotoxicity risk with bortezomib versus lenalidomide for treatment of multiple myeloma: a propensity matched study of 1,790 patients, Am. J. Hematol., 92, E15, 10.1002/ajh.24599
Waxman, 2018, Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis, JAMA Oncol., 4, 10.1001/jamaoncol.2017.4519
Tang, 2010, Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts, Cardiovasc. Res., 88, 424, 10.1093/cvr/cvq217
Caron, 2011, The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice, BMC Musculoskelet. Disord., 12, 185, 10.1186/1471-2474-12-185
Assereto, 2006, Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment, Am. J. Physiol. Cell Physiol., 290, C577, 10.1152/ajpcell.00434.2005
Penna, 2016, Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting, J. Cachexia. Sarcopenia Muscle, 7, 345, 10.1002/jcsm.12050
Hyer, 2018, A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment, Nat. Med., 24, 186, 10.1038/nm.4474
Eddins, 2011, Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy, Cell Biochem. Biophys., 60, 113, 10.1007/s12013-011-9175-7
Bowen, 2017, Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia, J. Cachexia. Sarcopenia Muscle, 8, 939, 10.1002/jcsm.12233
Blondelle, 2017, Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 429, 1045, 10.1016/j.jmb.2017.02.012
D’Arcy, 2015, Deubiquitinase inhibition as a cancer therapeutic strategy, Pharmacol. Ther., 147, 32, 10.1016/j.pharmthera.2014.11.002
Boselli, 2017, An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons, J. Biol. Chem., 292, 19209, 10.1074/jbc.M117.815126