Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease

Trends in Molecular Medicine - Tập 25 - Trang 760-774 - 2019
Karim Hnia1, Tim Clausen2,3, Christel Moog-Lutz4
1INSERM, UMR1048, Université Toulouse III, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
2Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
3Medical University of Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
4Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France

Tài liệu tham khảo

Powers, 2013, Diversity in the origins of proteostasis networks--a driver for protein function in evolution, Nat. Rev. Mol. Cell Biol., 14, 237, 10.1038/nrm3542 Sala, 2017, Shaping proteostasis at the cellular, tissue, and organismal level, J. Cell Biol., 216, 1231, 10.1083/jcb.201612111 Komander, 2012, The ubiquitin code, Annu. Rev. Biochem., 81, 203, 10.1146/annurev-biochem-060310-170328 Zheng, 2017, Ubiquitin ligases: structure, function, and regulation, Annu. Rev. Biochem., 86, 129, 10.1146/annurev-biochem-060815-014922 Scheffner, 2014, Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects, Biochim. Biophys. Acta, 1843, 61, 10.1016/j.bbamcr.2013.03.024 Dove, 2016, Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms, EMBO Rep., 17, 1221, 10.15252/embr.201642641 Fukuda, 2017, Proteolysis regulates cardiomyocyte maturation and tissue integration, Nat. Commun., 8, 10.1038/ncomms14495 Chan, 2013, Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner, Cell Stem Cell, 12, 587, 10.1016/j.stem.2013.03.004 Metais, 2018, Asb2alpha-filamin A axis is essential for actin cytoskeleton remodeling during heart development, Circ. Res., 122, e34, 10.1161/CIRCRESAHA.117.312015 Willis, 2014, Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo, Cell Biochem. Funct., 32, 39, 10.1002/cbf.2969 McElhinny, 2004, Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development, J. Cell Sci., 117, 3175, 10.1242/jcs.01158 Shimizu, 2017, The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes, Elife, 6, 10.7554/eLife.27955 Chal, 2017, Making muscle: skeletal myogenesis in vivo and in vitro, Development, 144, 2104, 10.1242/dev.151035 Boutet, 2007, Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors, Cell, 130, 349, 10.1016/j.cell.2007.05.044 Boutet, 2010, Taf1 regulates Pax3 protein by monoubiquitination in skeletal muscle progenitors, Mol. Cell, 40, 749, 10.1016/j.molcel.2010.09.029 Bustos, 2015, NEDD4 regulates PAX7 levels promoting activation of the differentiation program in skeletal muscle precursors, Stem Cells, 33, 3138, 10.1002/stem.2125 Lagirand-Cantaloube, 2009, Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo, PLoS One, 4, 10.1371/journal.pone.0004973 Noy, 2012, HUWE1 ubiquitinates MyoD and targets it for proteasomal degradation, Biochem. Biophys. Res. Commun., 418, 408, 10.1016/j.bbrc.2012.01.045 Li, 2015, A specific E3 ligase/deubiquitinase pair modulates TBP protein levels during muscle differentiation, Elife, 4, 10.7554/eLife.08536 Nastasi, 2004, Ozz-E3, a muscle-specific ubiquitin ligase, regulates beta-catenin degradation during myogenesis, Dev. Cell, 6, 269, 10.1016/S1534-5807(04)00020-6 Campos, 2010, Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development, PLoS One, 5, 10.1371/journal.pone.0009866 Centner, 2001, Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain, J. Mol. Biol., 306, 717, 10.1006/jmbi.2001.4448 Cohen, 2009, During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation, J. Cell Biol., 185, 1083, 10.1083/jcb.200901052 Kedar, 2004, Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I, Proc. Natl. Acad. Sci. U. S. A., 101, 18135, 10.1073/pnas.0404341102 Polge, 2018, A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate, J. Cachexia. Sarcopenia Muscle, 9, 129, 10.1002/jcsm.12249 Witt, 2005, MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination, J. Mol. Biol., 350, 713, 10.1016/j.jmb.2005.05.021 Willis, 2009, Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo, Circ. Res., 105, 80, 10.1161/CIRCRESAHA.109.194928 Spencer, 2000, Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein, J. Cell Biol., 150, 771, 10.1083/jcb.150.4.771 Fielitz, 2007, Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction, Proc. Natl. Acad. Sci. U. S. A., 104, 4377, 10.1073/pnas.0611726104 Cohen, 2012, Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy, J. Cell Biol., 198, 575, 10.1083/jcb.201110067 Volodin, 2017, Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization, Proc. Natl. Acad. Sci. U. S. A., 114, E1375, 10.1073/pnas.1612988114 Hol, 2017, Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin, Cold Spring Harb. Perspect. Biol., 9, a021642, 10.1101/cshperspect.a021642 Chen, 2005, Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake, Circ. Res., 97, 1018, 10.1161/01.RES.0000189262.92896.0b Genschik, 2013, The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications, EMBO J., 32, 2307, 10.1038/emboj.2013.173 Skaar, 2014, SCF ubiquitin ligase-targeted therapies, Nat. Rev. Drug Discov., 13, 889, 10.1038/nrd4432 Bodine, 2001, Identification of ubiquitin ligases required for skeletal muscle atrophy, Science, 294, 1704, 10.1126/science.1065874 Li, 2004, Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex, J. Clin. Invest., 114, 1058, 10.1172/JCI200422220 Bodine, 2014, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1, Am. J. Physiol. Endocrinol. Metab., 307, E469, 10.1152/ajpendo.00204.2014 Mearini, 2010, Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms, Cardiovasc. Res., 85, 357, 10.1093/cvr/cvp348 Papizan, 2018, Cullin-3-RING ubiquitin ligase activity is required for striated muscle function in mice, J. Biol. Chem., 293, 8802, 10.1074/jbc.RA118.002104 Greenberg, 2008, Krp1 (sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes, Exp. Cell Res., 314, 1177, 10.1016/j.yexcr.2007.12.009 Ramirez-Martinez, 2017, KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination, Elife, 6, 10.7554/eLife.26439 Lange, 2012, Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover, Mol. Biol. Cell, 23, 2490, 10.1091/mbc.e12-01-0052 Thottakara, 2015, The E3 ubiquitin ligase Asb2beta is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation, J. Mol. Cell. Cardiol., 87, 214, 10.1016/j.yjmcc.2015.08.020 Hellerschmied, 2018, UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins, Nat. Commun., 9, 484, 10.1038/s41467-018-02924-7 Koegl, 1999, A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96, 635, 10.1016/S0092-8674(00)80574-7 D’Cruz, 2016, PDLIM7 is a novel target of the ubiquitin ligase Nedd4-1 in skeletal muscle, Biochem. J., 473, 267, 10.1042/BJ20150222 Guy, 1999, The PDZ domain of the LIM protein enigma binds to beta-tropomyosin, Mol. Biol. Cell, 10, 1973, 10.1091/mbc.10.6.1973 Wing, 2013, Deubiquitinases in skeletal muscle atrophy, Int. J. Biochem. Cell Biol., 45, 2130, 10.1016/j.biocel.2013.05.002 Wing, 2016, Deubiquitinating enzymes in skeletal muscle atrophy – an essential role for USP19, Int. J. Biochem. Cell Biol., 79, 462, 10.1016/j.biocel.2016.07.028 Valero, 2001, Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25, Genome Biol., 2, 10.1186/gb-2001-2-10-research0043 Bosch-Comas, 2006, The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins, Cell. Mol. Life Sci., 63, 723, 10.1007/s00018-005-5533-1 Hu, 2018, Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury, J. Clin. Invest., 128, 5294, 10.1172/JCI98287 Gavriilidis, 2018, The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle, Nat. Cell Biol., 20, 198, 10.1038/s41556-017-0024-9 Schoser, 2005, Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H, Ann. Neurol., 57, 591, 10.1002/ana.20441 Gupta, 2014, Kelch proteins: emerging roles in skeletal muscle development and diseases, Skelet. Muscle, 4, 11, 10.1186/2044-5040-4-11 Johansen, 2011, Selective autophagy mediated by autophagic adapter proteins, Autophagy, 7, 279, 10.4161/auto.7.3.14487 Rogov, 2014, Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy, Mol. Cell, 53, 167, 10.1016/j.molcel.2013.12.014 Zheng, 2011, Proteasome malfunction activates macroautophagy in the heart, Am. J. Cardiovasc. Dis., 1, 214 Tannous, 2008, Autophagy is an adaptive response in desmin-related cardiomyopathy, Proc. Natl. Acad. Sci. U. S. A., 105, 9745, 10.1073/pnas.0706802105 Zheng, 2011, Autophagy and p62 in cardiac proteinopathy, Circ. Res., 109, 296, 10.1161/CIRCRESAHA.111.244707 Su, 2015, COP9 signalosome controls the degradation of cytosolic misfolded proteins and protects against cardiac proteotoxicity, Circ. Res., 117, 956, 10.1161/CIRCRESAHA.115.306783 Zhang, 2014, HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress, Nat. Commun., 5, 3430, 10.1038/ncomms4430 Bedard, 2015, Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting, FASEB J., 29, 3889, 10.1096/fj.15-270579 Jin, 2016, USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1, EMBO J., 35, 866, 10.15252/embj.201593596 Platta, 2012, Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1, Biochem. J., 441, 399, 10.1042/BJ20111424 Zaglia, 2014, Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy, J. Clin. Invest., 124, 2410, 10.1172/JCI66339 Liu, 2016, Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination, Mol. Cell, 61, 84, 10.1016/j.molcel.2015.11.001 Kaushik, 2018, The coming of age of chaperone-mediated autophagy, Nat. Rev. Mol. Cell Biol., 19, 365, 10.1038/s41580-018-0001-6 Arndt, 2010, Chaperone-assisted selective autophagy is essential for muscle maintenance, Curr. Biol., 20, 143, 10.1016/j.cub.2009.11.022 Selcen, 2009, Mutation in BAG3 causes severe dominant childhood muscular dystrophy, Ann. Neurol., 65, 83, 10.1002/ana.21553 Behl, 2016, Breaking BAG: the co-chaperone BAG3 in health and disease, Trends Pharmacol. Sci., 37, 672, 10.1016/j.tips.2016.04.007 Luders, 2000, The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome, J. Biol. Chem., 275, 4613, 10.1074/jbc.275.7.4613 Demand, 2001, Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling, Curr. Biol., 11, 1569, 10.1016/S0960-9822(01)00487-0 Gazda, 2013, The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans, Cell, 152, 183, 10.1016/j.cell.2012.12.025 Wang, 2011, Proteasome functional insufficiency in cardiac pathogenesis, Am. J. Physiol. Heart Circ. Physiol., 301, H2207, 10.1152/ajpheart.00714.2011 Li, 2017, Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy, J. Mol. Cell. Cardiol., 102, 53, 10.1016/j.yjmcc.2016.11.013 Garcia-Prat, 2016, Autophagy maintains stemness by preventing senescence, Nature, 529, 37, 10.1038/nature16187 Wertz, 2019, From discovery to bedside: targeting the ubiquitin system, Cell Chem Biol, 26, 156, 10.1016/j.chembiol.2018.10.022 Yin, 2015, Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure, Biochim. Biophys. Acta, 1852, 47, 10.1016/j.bbadis.2014.11.003 Fielitz, 2007, Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3, J. Clin. Invest., 117, 2486, 10.1172/JCI32827 Clemen, 2013, Desminopathies: pathology and mechanisms, Acta Neuropathol., 125, 47, 10.1007/s00401-012-1057-6 Garg, 2014, KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy, J. Clin. Invest., 124, 3529, 10.1172/JCI74994 Sambuughin, 2010, Dominant mutations in KBTBD13, a member of the BTB/Kelch family, cause nemaline myopathy with cores, Am. J. Hum. Genet., 87, 842, 10.1016/j.ajhg.2010.10.020 Gupta, 2013, Identification of KLHL41 mutations implicates BTB-kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy, Am. J. Hum. Genet., 93, 1108, 10.1016/j.ajhg.2013.10.020 Buckingham, 2017, Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle, Proc. Natl. Acad. Sci. U. S. A., 114, 5830, 10.1073/pnas.1610605114 Sampath, 2018, Myoblast fusion confusion: the resolution begins, Skelet. Muscle, 8, 3, 10.1186/s13395-017-0149-3 Schiaffino, 2015, Developmental myosins: expression patterns and functional significance, Skelet. Muscle, 5, 22, 10.1186/s13395-015-0046-6 Sanger, 2010, Assembly and dynamics of myofibrils, J. Biomed. Biotechnol., 2010, 858606, 10.1155/2010/858606 Hideshima, 2001, The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res., 61, 3071 Kortuem, 2013, Carfilzomib, Blood, 121, 893, 10.1182/blood-2012-10-459883 Vogl, 2017, Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma, Leuk. Lymphoma, 58, 1872, 10.1080/10428194.2016.1263842 Reneau, 2017, Cardiotoxicity risk with bortezomib versus lenalidomide for treatment of multiple myeloma: a propensity matched study of 1,790 patients, Am. J. Hematol., 92, E15, 10.1002/ajh.24599 Waxman, 2018, Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis, JAMA Oncol., 4, 10.1001/jamaoncol.2017.4519 Tang, 2010, Proteasome functional insufficiency activates the calcineurin-NFAT pathway in cardiomyocytes and promotes maladaptive remodelling of stressed mouse hearts, Cardiovasc. Res., 88, 424, 10.1093/cvr/cvq217 Caron, 2011, The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice, BMC Musculoskelet. Disord., 12, 185, 10.1186/1471-2474-12-185 Assereto, 2006, Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment, Am. J. Physiol. Cell Physiol., 290, C577, 10.1152/ajpcell.00434.2005 Penna, 2016, Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting, J. Cachexia. Sarcopenia Muscle, 7, 345, 10.1002/jcsm.12050 Hyer, 2018, A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment, Nat. Med., 24, 186, 10.1038/nm.4474 Eddins, 2011, Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy, Cell Biochem. Biophys., 60, 113, 10.1007/s12013-011-9175-7 Bowen, 2017, Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia, J. Cachexia. Sarcopenia Muscle, 8, 939, 10.1002/jcsm.12233 Blondelle, 2017, Cullin E3 ligase activity is required for myoblast differentiation, J. Mol. Biol., 429, 1045, 10.1016/j.jmb.2017.02.012 D’Arcy, 2015, Deubiquitinase inhibition as a cancer therapeutic strategy, Pharmacol. Ther., 147, 32, 10.1016/j.pharmthera.2014.11.002 Boselli, 2017, An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons, J. Biol. Chem., 292, 19209, 10.1074/jbc.M117.815126