Shapes and dynamics of dual-mode Hirota–Satsuma coupled KdV equations: Exact traveling wave solutions and analysis

Chinese Journal of Physics - Tập 58 - Trang 49-56 - 2019
Marwan Alquran1, Imad Jaradat1, Dumitru Băleanu2,3
1Department of Mathematics and Statistics, Jordan University of Science & Technology, Irbid 22110, Jordan
2Department of Mathematics, Cankaya University, Ankara, Turkey
3Institute of Space Sciences, Magurele–Bucharest, Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Guo, 2013, Dynamic behaviors of the breather solutions for the AB system in fluid mechanics, Nonlinear Dyn., 74, 701, 10.1007/s11071-013-0998-1

Guo, 2014, Breathers and localized solitons for the Hirota-Maxwell-Bloch system on constant backgrounds in erbium doped fibers, Ann. Phys., 344, 10, 10.1016/j.aop.2014.02.006

Yang, 2018, Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation, Appl. Math. Lett., 82, 64, 10.1016/j.aml.2018.02.018

Li, 2018, Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation, Appl. Math. Lett., 83, 110, 10.1016/j.aml.2018.03.018

Li, 2016, Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model, J. Phys. Soc. Jpn., 85, 124001, 10.7566/JPSJ.85.124001

Zhang, 2017, Dark soliton solutions of the defocusing Hirota equation by the binary Darboux transformation, Nonlinear Dyn., 89, 531, 10.1007/s11071-017-3469-2

Zhang, 2017, Darboux transformation and dark soliton solution for the defocusing sasa-satsuma equation, Appl. Math. Lett., 69, 101, 10.1016/j.aml.2017.02.012

Zhang, 2017, Binary Darboux transformation for the coupled Sasa-Satsuma equations, Chaos, 27, 073102, 10.1063/1.4986807

Zhang, 2017, General n-dark vector soliton solution for multi-component defocusing Hirota system in optical fiber media, Commun. Nonlinear Sci. Numer. Simul., 51, 124, 10.1016/j.cnsns.2017.03.019

Korsunsky, 1994, Soliton solutions for a second-order KdV equation, Phys. Lett. A, 185, 174, 10.1016/0375-9601(94)90842-7

Lee, 2007

Hirota, 1981, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85, 407, 10.1016/0375-9601(81)90423-0

Wazwaz, 2017, Multiple soliton solutions and other exact solutions for a two-mode KdV equation, Math. Methods Appl. Sci., 40, 1277, 10.1002/mma.4138

Xiao, 2016, Multi-soliton solutions and Bucklund transformation for a two-mode KdV equation in a fluid, Waves Random Complex Media, 31, 1

Lee, 2011, A hamiltonian model and soliton phenomenon for a two-mode KdV equation, Rocky Mount. J. Math., 41, 1273, 10.1216/RMJ-2011-41-4-1273

Lee, 2010, Quasi-solitons of the two-mode Korteweg-de Vries equation, Eur. Phys. J. Appl. Phys., 52, 11301, 10.1051/epjap/2010132

Lee, 2013, On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system, Waves Random Complex Media, 23, 56, 10.1080/17455030.2013.770585

Hong, 1999, New non-traveling solitary wave solutions for a second-order Korteweg-de Vries equation, Z. Naturforsch., 54a, 375, 10.1515/zna-1999-6-705

Alquran, 2017, Jacobi elliptic function solutions for a two-mode KdV equation, J. King Saud Univ., 10.1016/j.jksus.2017.06.010

Jaradat, 2018, Two-mode coupled burgers equation: multiple-kink solutions and other exact solutions, Alexandria Eng. J., 57, 2151, 10.1016/j.aej.2017.06.014

Syam, 2017, A study on the two-mode coupled modified Korteweg-de Vries using the simplified bilinear and the trigonometric-function methods, Nonlinear Dyn., 90, 1363, 10.1007/s11071-017-3732-6

Jaradat, 2017, A two-mode coupled Korteweg-de Vries: multiple-soliton solutions and other exact solutions, Nonlinear Dyn., 90, 371, 10.1007/s11071-017-3668-x

Alquran, 2018, A modified approach for a reliable study of new nonlinear equation: two-mode Korteweg-de Vries-Burgers equation, Nonlinear Dyn., 91, 1619, 10.1007/s11071-017-3968-1

Wazwaz, 2017, A two-mode burgers equation of weak shock waves in a fluid: multiple kink solutions and other exact solutions, Int. J. Appl. Comput. Math, 3, 3977, 10.1007/s40819-016-0302-4

Wazwaz, 2018, Two-mode Sharma-Tasso-Olver equation and two-mode fourth-order burgers equation: multiple kink solutions, Alexandria Eng. J., 57, 1971, 10.1016/j.aej.2017.04.003

Jaradat, 2018, A numerical study on weak-dissipative two-mode perturbed Burgers and Ostrovsky models: right-left moving waves, Eur. Phys. J. Plus., 133

Jaradat, 2018, Dark and singular optical solutions with dual-mode nonlinear Schrödinger’s equation and kerr-law nonlinearity, Optik, 172, 822, 10.1016/j.ijleo.2018.07.069

Alquran, 2018, Dynamism of two-mode’s parameters on the field function for third-order dispersive fisher: application for fibre optics, Opt. Quant. Electron., 50, 354, 10.1007/s11082-018-1621-y

Irwaq, 2018, New dual-mode Kadomtsev–Petviashvili model with strong-weak surface tension: analysis and application, Adv. Differ. Equ., 2018

Ismail, 2014, A numerical solution for Hirota–Satsuma coupled KdV equation, Abstract Appl. Anal., 819367

Qawasmeh, 2014, Reliable study of some new fifth-order nonlinear equations by means of g′/g expansion method and rational sine–cosine method, Applied Mathematical Sciences, 8, 5985, 10.12988/ams.2014.48669

Wang, 2018, A coupled KdV system: consistent tanh expansion, soliton-cnoidal wave solutions and nonlocal symmetries, Chin. J. Phys., 56, 598, 10.1016/j.cjph.2018.02.009

Arshad, 2018, Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques, Chin. J. Phys., 56, 2879, 10.1016/j.cjph.2018.09.023

Kumar, 2018, Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology, Chin. J. Phys., 56, 75, 10.1016/j.cjph.2017.11.020

Kudryashov, 2012, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 2248, 10.1016/j.cnsns.2011.10.016

Wang, 2018, Construction of new exact solutions to time-fractional two-component evolutionary system of order 2 via different methods, Opt. Quant. Electron., 50