Shaped gold and silver nanoparticles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 2005, 44(48): 7852–7872
Lopez-Acevedo O, Kacprzak K A, Akola J, et al. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry, 2010, 2(4): 329-334
Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials, 2001, 13(10): 3196–3210
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193
Maier S A, Brongersma M L, Kik P G, et al. Plasmonics — a route to nanoscale optical devices. Advanced Materials, 2001, 13(19): 1501–1505
Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 2002, 106(32): 7729–7744
Murray C B, Sun S, Doyle H, et al. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin, 2001, 26(12): 985–991
Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106
Dick, L A, McFarland A D, Haynes C L, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 2001, 106(4): 853–860
Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticleenhanced Raman spectroscopy. Nature, 2010, 464(7287): 392–395
Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine, 2009, 7(2): 75–91
Giljohann D A, Seferos D S, Daniel L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294
Brown C L, Bushell G, Whitehouse M W, et al. Nanogoldpharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin, 2007, 40(3): 245–250
Xu R, Wang D, Zhang J, et al. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry — An Asian Journal, 2006, 1(6): 888–893
Tian N, Zhou Z, Sun S, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735
Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2002, 107(3): 668–677
Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214
Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038
Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics, 2005, 123(11): 114713 (9 pages)
Liang H, Wang W, Huang Y, et al. Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C, 2010, 114(16): 7427–7431
Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, 2003, 128(6): 686–691
Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209–217
Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103
Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials, 2010, 22(16): 1781–1804
Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37(9): 1783–1791
Millstone J E, Hurst S J, Metraux G S, et al. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664
Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2004, 120(1): 357–366
Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence, 2004, 14(4): 331–341
Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, 128(6): 2115–2120
Ding H, Yong K-T, Roy I, et al. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C, 2007, 111(34): 12552–12557
Oyelere A K, Chen P C, Huang X, et al. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry, 2007, 18(5): 1490–1497
Oldenburg A L, Hansen M N, Zweifel D A, et al. Plasmonresonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express, 2006, 14(15): 6724–6738
Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 2009, 21(48): 4880–4910
Tian Y, Tatsuma T. Mechanisms and applications of plasmoninduced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637
Qin P, Linder M, Brinck T, et al. High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials, 2009, 21(29): 2993–2996
Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 2010, 9(3): 239–244
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
Kulkarni A P, Noone K M, Munechika K, et al. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters, 2010, 10(4): 1501–1505
Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B, 2000, 104(26): 6095–6098
Sanders A W, Routenberg D A, Wiley B J, et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters, 2006, 6(8): 1822–1826
Knight M W, Grady N K, Bardhan R, et al. Nanoparticlemediated coupling of light into a nanowire. Nano Letters, 2007, 7(8): 2346–2350
Guo X, Qiu M, Bao J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters, 2009, 9(12): 4515–4519
Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402–406
Noginov M A, Zhu G, Mayy M, et al. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806 (4 pages)
Yan R, Pausauskie P, Huang J, et al. Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21045–21050
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
Zhang Q, Cobley C, Au L, et al. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces, 2009, 1(9): 2044–2048
Zeng J, Zheng Y, Rycenga M, et al. Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society, 2010, 132(25): 8552–8553
Kim F, Connor S, Song H, et al. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677
Kundu S, Maheshwari V, Niu S, et al. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology, 2008, 19(6): 065604 (5 pages)
Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Materials Letters, 2006, 60(15): 1896–1900
Zhang Q, Huang C Z, Ling J, et al. Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B, 2008, 112(51): 16990–16994
Zhu J J, Kan C X, Zhu X G G, et al. Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research, 2007, 22(6): 1479–1485
Habas S E, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697
Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951
Li C C, Shuford K L, Chen M H, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano, 2008, 2(9): 1760–1769
Li C C, Shuford K L, Park Q H, et al. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268
Song S, Liu R, Zhang Y, et al. Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry–A European Journal, 2010, 16(21): 6251–6256
Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society, 2006, 128(46): 14863–14870
Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir, 2008, 24(18): 10407–10413
Tsuji M, Ogino M, Matsuo R, et al. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design 2010, 10(1): 296–301
Zheng X L, Zhao X J, Guo D W, et al. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir, 2009, 25(6): 3802–3807
Zhang W, Liu Y, Cao R, et al. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society, 2008, 130(46): 15581–15588
Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials, 2008, 20(16): 5186–5190
Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, et al. Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials, 2007, 17(9): 1443–1450
Murphy C J, Gole A M, Hunyadi S E, et al. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554
Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B, 2005, 109(29): 13857–13870
Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters, 2003, 3(9): 1229–1233
Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960
Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165–168
Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication, 2008, 10(7): 1027–1030
N’Gom M, Ringnalda J, Mansfield J F, et al. Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters, 2008, 8(10): 3200–3204
Tang X, Tsuji M, Jiang P, et al. Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338(1–3): 33–39
Wiley B J, Wang Z, Wei J, et al. Synthesis and electrical characterization of silver nanobeams. Nano Letters, 2006, 6(10): 2273–2278
Xue C, Metraux G S, Millstone J E, et al. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344
Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007
Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B, 2002, 106(42): 10777–10781
Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903
Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749
Xiong Y, Washio I, Chen J, et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570
Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir, 2008, 24(18): 10437–10442
Xiong Y J, Siekkinen A R, Wang J G, et al. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602
Cao Z W, Fu H B, Kang L T, et al. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry, 2008, 18(23): 2673–2678
Zhao N, Wei Y, Sun N, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998
Li L, Wang Z, Huang T, et al. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335
Bai J, Qin Y, Jiang C, et al. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials, 2007, 19(14): 3367–3369
Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C, 2008, 112(10): 3460–3463
Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition, 2005, 44(14): 2154–2157
Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601
Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters, 2004, 4(9): 1733–1739
Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society, 2004, 126(41): 13200–13201
Skrabalak S E, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190
Siekkinen A R, McLellan J M, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters, 2006, 432(4–6): 491–496
Wiley B J, Chen Y C, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Letters, 2007, 7(4): 1032–1036
Mulvihill M J, Ling X Y, Henzie J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of singleparticle SERS. Journal of the American Chemical Society, 2009, 132(1): 268–274
Wu X, Redmond P L, Liu H, et al. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506
Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography, 1962, 15: 916–918
Zhang Q, Xie J, Yang J, et al. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano, 2009, 3(1): 139–148
Peng S, McMahon J M, Schatz G C, et al. Reversing the sizedependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33): 14530–14534
Xu J, Li S, Weng J, et al. Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials, 2008, 18(2): 277–284
Lu X, Tuan H-Y, Korgel B A, et al. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry–A European Journal, 2008, 14(5): 1584–1591
Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry–A European Journal, 2009, 15(47): 13181–13187
Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, et al. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534
Gao Y, Jiang P, Song L, et al.et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth, 2006, 289(1): 376–380
Zheng X, Xu W, Corredor C, et al. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C, 2007, 111(41): 14962–14967
Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 2010, 132(6): 1825–1827
Gao Y, Jiang P, Liu D F, et al. Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B, 2004, 108(34): 12877–12881
Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, (7): 617–618
Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82
Lucas M, Leach A M, McDowell M T, et al. Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B, 2008, 77(24): 245420 (4 pages)
Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005, 21(8): 3334–3337
Zhang S, Jiang Z, Xie Z, et al. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B, 2005, 109(19): 9416–9421
Kim S H, Choi B S, Kang K, et al. Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds, 2007, 433(1–2): 261–264
Zheng X, Zhu L, Yan A, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science, 2003, 268(2): 357–361
Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth, 2006, 289(1): 255–259
Pietrobon B, McEachran M, Kitaev V. Synthesis of sizecontrolled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano, 2009, 3(1): 21–26
Seo D, Yoo C I, Jung J, et al. Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society, 2008, 130(10): 2940–2941
Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process. Advacned Materials, 2002, 14(11): 833–837
Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736–4745
Jin R, Charles Cao Y, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
An J, Tang B: Ning X, et al. Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C, 2007, 111(49): 18055–18059
Zhang Q, Ge J, Pham T, et al. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition, 2009, 48(19): 3516–3519
Yener D O, Sindel J, Randall C A, et al. Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir, 2002, 18(22): 8692–8699
Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters, 2002, 2(8): 903–905
Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials, 2009, 19(5): 679–688
Malikova N, Pastoriza-Santos I, Schierhorn M, et al. Layer-bylayer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir, 2002, 18(9): 3694–3697
Millstone J E, Park S, Shuford K L, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313
Shankar S S, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 2005, 17(3): 566–572
Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal, 2005, 11(2): 440–452
Li C, Cai W, Li Y, et al. Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B, 2006, 110(4): 1546–1552
Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679
Zhang J, Liu H, Wang Z, et al. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters, 2007, 91(13): 133112 (3 pages)
Zheng H, Smith R K, Jun Y-W, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324(5932): 1309–1312
Abécassis B, Testard F, Spalla O, et al. Probing in situ the nucleation and growth of gold nanoparticles by small-angle Xray scattering. Nano Letters, 2007, 7(6): 1723–1727
Polte J, Erler R, Thunemann A F, et al. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano, 2010, 4(2): 1076–1082
Chen C-H, Sarma L S, Chen J-M, et al. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano, 2007, 1(2): 114–125
Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir, 2009, 25(11): 6049–6061
Cheong S, Watt J, Ingham B, et al. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society, 2009, 131(40): 14590–14595
Middelkoop V, Boldrin P, Peel M, et al. Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials, 2009, 21(12): 2430–2435
Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition, 2009, 48(26): 4788–4791
Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials, 2009, 21(35): 3572–3575
Park S Y, Lytton-Jean A K R, Lee B, et al. DNA-programmable nanoparticle crystallization. Nature, 2008, 451(7178): 553–556
Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439(7072): 55–59
Li W Y, Camargo P H C, Au L, et al. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition, 2010, 49(1): 164–168
Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology, 2007, 2(7): 435–440
Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano, 2009, 3(8): 2129–2138
Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Geminisurfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition, 2009, 48(50): 9484–9488
Brousseau III L C, Novak J P, Marinakos S M, et al. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Advanced Materials, 1999, 11(6): 447–449