Shaped gold and silver nanoparticles

Yugang Sun1, Changhua An2
1Center for Nanoscale Materials, Argonne National Laboratory, Argonne, USA
2State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 2005, 44(48): 7852–7872

Lopez-Acevedo O, Kacprzak K A, Akola J, et al. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry, 2010, 2(4): 329-334

Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials, 2001, 13(10): 3196–3210

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193

Maier S A, Brongersma M L, Kik P G, et al. Plasmonics — a route to nanoscale optical devices. Advanced Materials, 2001, 13(19): 1501–1505

Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 2002, 106(32): 7729–7744

Murray C B, Sun S, Doyle H, et al. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin, 2001, 26(12): 985–991

Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106

Dick, L A, McFarland A D, Haynes C L, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 2001, 106(4): 853–860

Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticleenhanced Raman spectroscopy. Nature, 2010, 464(7287): 392–395

Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine, 2009, 7(2): 75–91

Giljohann D A, Seferos D S, Daniel L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294

Brown C L, Bushell G, Whitehouse M W, et al. Nanogoldpharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin, 2007, 40(3): 245–250

Xu R, Wang D, Zhang J, et al. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry — An Asian Journal, 2006, 1(6): 888–893

Tian N, Zhou Z, Sun S, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2002, 107(3): 668–677

Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214

Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415

Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038

Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics, 2005, 123(11): 114713 (9 pages)

Liang H, Wang W, Huang Y, et al. Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C, 2010, 114(16): 7427–7431

Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, 2003, 128(6): 686–691

Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209–217

Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103

Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325

Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials, 2010, 22(16): 1781–1804

Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37(9): 1783–1791

Millstone J E, Hurst S J, Metraux G S, et al. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664

Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2004, 120(1): 357–366

Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence, 2004, 14(4): 331–341

Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248

Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, 128(6): 2115–2120

Ding H, Yong K-T, Roy I, et al. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C, 2007, 111(34): 12552–12557

Oyelere A K, Chen P C, Huang X, et al. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry, 2007, 18(5): 1490–1497

Oldenburg A L, Hansen M N, Zweifel D A, et al. Plasmonresonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express, 2006, 14(15): 6724–6738

Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 2009, 21(48): 4880–4910

Tian Y, Tatsuma T. Mechanisms and applications of plasmoninduced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637

Qin P, Linder M, Brinck T, et al. High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials, 2009, 21(29): 2993–2996

Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 2010, 9(3): 239–244

Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213

Kulkarni A P, Noone K M, Munechika K, et al. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters, 2010, 10(4): 1501–1505

Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B, 2000, 104(26): 6095–6098

Sanders A W, Routenberg D A, Wiley B J, et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters, 2006, 6(8): 1822–1826

Knight M W, Grady N K, Bardhan R, et al. Nanoparticlemediated coupling of light into a nanowire. Nano Letters, 2007, 7(8): 2346–2350

Guo X, Qiu M, Bao J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters, 2009, 9(12): 4515–4519

Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402–406

Noginov M A, Zhu G, Mayy M, et al. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806 (4 pages)

Yan R, Pausauskie P, Huang J, et al. Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21045–21050

Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179

Zhang Q, Cobley C, Au L, et al. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces, 2009, 1(9): 2044–2048

Zeng J, Zheng Y, Rycenga M, et al. Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society, 2010, 132(25): 8552–8553

Kim F, Connor S, Song H, et al. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677

Kundu S, Maheshwari V, Niu S, et al. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology, 2008, 19(6): 065604 (5 pages)

Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Materials Letters, 2006, 60(15): 1896–1900

Zhang Q, Huang C Z, Ling J, et al. Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B, 2008, 112(51): 16990–16994

Zhu J J, Kan C X, Zhu X G G, et al. Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research, 2007, 22(6): 1479–1485

Habas S E, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697

Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951

Li C C, Shuford K L, Chen M H, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano, 2008, 2(9): 1760–1769

Li C C, Shuford K L, Park Q H, et al. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268

Song S, Liu R, Zhang Y, et al. Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry–A European Journal, 2010, 16(21): 6251–6256

Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society, 2006, 128(46): 14863–14870

Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir, 2008, 24(18): 10407–10413

Tsuji M, Ogino M, Matsuo R, et al. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design 2010, 10(1): 296–301

Zheng X L, Zhao X J, Guo D W, et al. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir, 2009, 25(6): 3802–3807

Zhang W, Liu Y, Cao R, et al. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society, 2008, 130(46): 15581–15588

Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials, 2008, 20(16): 5186–5190

Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, et al. Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials, 2007, 17(9): 1443–1450

Murphy C J, Gole A M, Hunyadi S E, et al. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554

Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B, 2005, 109(29): 13857–13870

Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters, 2003, 3(9): 1229–1233

Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960

Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165–168

Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication, 2008, 10(7): 1027–1030

N’Gom M, Ringnalda J, Mansfield J F, et al. Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters, 2008, 8(10): 3200–3204

Tang X, Tsuji M, Jiang P, et al. Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338(1–3): 33–39

Wiley B J, Wang Z, Wei J, et al. Synthesis and electrical characterization of silver nanobeams. Nano Letters, 2006, 6(10): 2273–2278

Xue C, Metraux G S, Millstone J E, et al. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344

Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007

Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B, 2002, 106(42): 10777–10781

Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903

Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749

Xiong Y, Washio I, Chen J, et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570

Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir, 2008, 24(18): 10437–10442

Xiong Y J, Siekkinen A R, Wang J G, et al. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602

Cao Z W, Fu H B, Kang L T, et al. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry, 2008, 18(23): 2673–2678

Zhao N, Wei Y, Sun N, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998

Li L, Wang Z, Huang T, et al. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335

Bai J, Qin Y, Jiang C, et al. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials, 2007, 19(14): 3367–3369

Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C, 2008, 112(10): 3460–3463

Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition, 2005, 44(14): 2154–2157

Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601

Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters, 2004, 4(9): 1733–1739

Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society, 2004, 126(41): 13200–13201

Skrabalak S E, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190

Siekkinen A R, McLellan J M, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters, 2006, 432(4–6): 491–496

Wiley B J, Chen Y C, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Letters, 2007, 7(4): 1032–1036

Mulvihill M J, Ling X Y, Henzie J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of singleparticle SERS. Journal of the American Chemical Society, 2009, 132(1): 268–274

Wu X, Redmond P L, Liu H, et al. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506

Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography, 1962, 15: 916–918

Zhang Q, Xie J, Yang J, et al. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano, 2009, 3(1): 139–148

Peng S, McMahon J M, Schatz G C, et al. Reversing the sizedependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33): 14530–14534

Xu J, Li S, Weng J, et al. Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials, 2008, 18(2): 277–284

Lu X, Tuan H-Y, Korgel B A, et al. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry–A European Journal, 2008, 14(5): 1584–1591

Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry–A European Journal, 2009, 15(47): 13181–13187

Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, et al. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534

Gao Y, Jiang P, Song L, et al.et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth, 2006, 289(1): 376–380

Zheng X, Xu W, Corredor C, et al. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C, 2007, 111(41): 14962–14967

Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 2010, 132(6): 1825–1827

Gao Y, Jiang P, Liu D F, et al. Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B, 2004, 108(34): 12877–12881

Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, (7): 617–618

Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82

Lucas M, Leach A M, McDowell M T, et al. Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B, 2008, 77(24): 245420 (4 pages)

Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005, 21(8): 3334–3337

Zhang S, Jiang Z, Xie Z, et al. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B, 2005, 109(19): 9416–9421

Kim S H, Choi B S, Kang K, et al. Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds, 2007, 433(1–2): 261–264

Zheng X, Zhu L, Yan A, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science, 2003, 268(2): 357–361

Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth, 2006, 289(1): 255–259

Pietrobon B, McEachran M, Kitaev V. Synthesis of sizecontrolled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano, 2009, 3(1): 21–26

Seo D, Yoo C I, Jung J, et al. Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society, 2008, 130(10): 2940–2941

Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process. Advacned Materials, 2002, 14(11): 833–837

Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736–4745

Jin R, Charles Cao Y, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490

An J, Tang B: Ning X, et al. Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C, 2007, 111(49): 18055–18059

Zhang Q, Ge J, Pham T, et al. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition, 2009, 48(19): 3516–3519

Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086

Yener D O, Sindel J, Randall C A, et al. Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir, 2002, 18(22): 8692–8699

Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters, 2002, 2(8): 903–905

Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials, 2009, 19(5): 679–688

Malikova N, Pastoriza-Santos I, Schierhorn M, et al. Layer-bylayer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir, 2002, 18(9): 3694–3697

Millstone J E, Park S, Shuford K L, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313

Shankar S S, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 2005, 17(3): 566–572

Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal, 2005, 11(2): 440–452

Li C, Cai W, Li Y, et al. Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B, 2006, 110(4): 1546–1552

Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679

Zhang J, Liu H, Wang Z, et al. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters, 2007, 91(13): 133112 (3 pages)

Zheng H, Smith R K, Jun Y-W, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324(5932): 1309–1312

Abécassis B, Testard F, Spalla O, et al. Probing in situ the nucleation and growth of gold nanoparticles by small-angle Xray scattering. Nano Letters, 2007, 7(6): 1723–1727

Polte J, Erler R, Thunemann A F, et al. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano, 2010, 4(2): 1076–1082

Chen C-H, Sarma L S, Chen J-M, et al. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano, 2007, 1(2): 114–125

Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir, 2009, 25(11): 6049–6061

Cheong S, Watt J, Ingham B, et al. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society, 2009, 131(40): 14590–14595

Middelkoop V, Boldrin P, Peel M, et al. Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials, 2009, 21(12): 2430–2435

Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition, 2009, 48(26): 4788–4791

Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials, 2009, 21(35): 3572–3575

Park S Y, Lytton-Jean A K R, Lee B, et al. DNA-programmable nanoparticle crystallization. Nature, 2008, 451(7178): 553–556

Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439(7072): 55–59

Li W Y, Camargo P H C, Au L, et al. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition, 2010, 49(1): 164–168

Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology, 2007, 2(7): 435–440

Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano, 2009, 3(8): 2129–2138

Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Geminisurfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition, 2009, 48(50): 9484–9488

Brousseau III L C, Novak J P, Marinakos S M, et al. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Advanced Materials, 1999, 11(6): 447–449

Nykypanchuk D, Maye M M, van der Lelie D, et al. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451(7178): 549–552