Shape stable phase change composites based on MXene/biomass-derived aerogel for solar–thermal energy conversion and storage
Tài liệu tham khảo
Zhang, 2019, Raspberry-shaped thermochromic energy storage nanocapsule with tunable sunlight absorption based on color change for temperature regulation, Small, 15
Liu, 2020, A multidirectionally thermoconductive phase change material enables high and durable electricity via real-environment solar-thermal-electric conversion, ACS Nano, 14, 15738, 10.1021/acsnano.0c06680
da Cunha, 2020, Phase change materials and energy efficiency of buildings: a review of knowledge, J. Energy Storage, 27, 10.1016/j.est.2019.101083
Du, 2022, Dopamine-decorated Ti3C2Tx MXene/Cellulose nanofiber aerogels supported form-stable phase change composites with superior solar-thermal conversion efficiency and extremely high thermal storage density, ACS Appl. Mater. Interfaces, 14, 15225, 10.1021/acsami.2c00117
Gong, 2022, A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspiredby a “brick–mortar” sandwich structure, Adv. Funct. Mater., 32, 10.1002/adfm.202200570
Weng, 2019, Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material, Energy Convers. Manag., 200, 10.1016/j.enconman.2019.112071
Pan, 2022, Copper foam effectively improves the thermal performance of graphene-aerogel composite phase-change materials for thermal storage, J. Energy Storage, 51, 10.1016/j.est.2022.104485
Yuan, 2019, Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization, Adv. Funct. Mater., 30
Chen, 2021, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion, Adv. Sci. (Weinh.), 8
Liu, 2023, High efficiency electro- and photo-thermal conversion cellulose nanofiber-based phase change materials for thermal management, J. Colloid Interface Sci., 629, 478, 10.1016/j.jcis.2022.08.132
Zhang, 2022, Biomass homogeneity reinforced carbon aerogels derived functional phase-change materials for solar-thermal energy conversion and storage, EnergyEnviron. Mater., 1
Feng, 2023, Aligned channel gelatin@nanographite aerogel supported form-stable phase change materials for solar-thermal energy conversion and storage, Carbon, 201, 756, 10.1016/j.carbon.2022.09.064
Tao, 2022, Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/electro- thermal energy conversion and storage, J. Colloid Interface Sci., 629, 632, 10.1016/j.jcis.2022.09.103
Liu, 2021, Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer, Angew. Chem. Int. Ed. Engl., 60, 13978, 10.1002/anie.202103186
Guo, 2022, Microsphere structure composite phase change material with anti-leakage, self-sensing, and photothermal conversion properties for thermal energy harvesting and multi-functional sensor, Adv. Funct. Mater., 33
Su, 2015, Review of solid–liquid phase change materials and their encapsulation technologies, Renew. Sust. Energ. Rev., 48, 373, 10.1016/j.rser.2015.04.044
Li, 2022, Fabrication and performance of shape-stable phase change composites supported by environment-friendly and economical loofah sponge fibers for thermal energy storage, Energ Fuel., 36, 3938, 10.1021/acs.energyfuels.2c00194
Yaxuan, 2022, Waste semicoke ash utilized to fabricate shape-stable phase change composites for building heating and cooling, Constr. Build. Mater., 361, 10.1016/j.conbuildmat.2022.129638
Zhang, 2021, Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon, J. Energy Storage, 43, 10.1016/j.est.2021.103174
Xue, 2019, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities, Chem. Eng. J., 365, 20, 10.1016/j.cej.2019.02.023
Liu, 2022, Aerogels meet phase change materials: fundamentals, advances, and beyond, ACS Nano, 16, 15586, 10.1021/acsnano.2c05067
Zhao, 2018, Biopolymer aerogels and foams: chemistry, properties, and applications, Angew. Chem. Int. Ed. Engl., 57, 7580, 10.1002/anie.201709014
Wang, 2022, Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites, J. Colloid Interface Sci., 605, 60, 10.1016/j.jcis.2021.07.066
Sun, 2022, Shape-stabilized phase change composites enabled by lightweight and bio-inspired interconnecting carbon aerogels for efficient energy storage and photo-thermal conversion, J. Mater. Chem. A, 10, 13556, 10.1039/D2TA02024F
Wei, 2022, Biomass vs inorganic and plastic-based aerogels: structural design, functional tailoring, resource-efficient applications and sustainability analysis, Prog. Mater. Sci., 125, 10.1016/j.pmatsci.2021.100915
Shen, 2022, Biomass-based carbon aerogel/Fe3O4@PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage, Compos. A: Appl. Sci. Manuf., 163, 10.1016/j.compositesa.2022.107248
Du, 2022, Construction of high thermal conductive boron Nitrid@Chitosan aerogel/paraffin composite phase change material, Sol. Energy Mater Sol. Cells, 240, 10.1016/j.solmat.2021.111532
Liao, 2020, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability, Compos. Sci. Technol., 189, 10.1016/j.compscitech.2020.108010
Liu, 2022, Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities, J. Mater. Sci. Technol., 113, 147, 10.1016/j.jmst.2021.11.008
Zheng, 2022, Polyimide/phosphorene hybrid aerogel-based composite phase change materials for high-efficient solar energy capture and photothermal conversion, Appl. Therm. Eng., 207, 10.1016/j.applthermaleng.2022.118173
Liu, 2020, In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection, Compos. Part B: Eng., 195, 10.1016/j.compositesb.2020.108072
Gao, 2023, Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination, Chem. Eng. J., 454, 10.1016/j.cej.2022.140362
Hu, 2021, Light-actuated shape memory and self-healing phase change composites supported by MXene/waterborne polyurethane aerogel for superior solar-thermal energy storage, Compos. Commun., 28, 10.1016/j.coco.2021.100980
Lin, 2020, MXene aerogel-based phase change materials toward solar energy conversion, Sol. Energy Mater. Sol. Cells, 206, 10.1016/j.solmat.2019.110229
Zheng, 2022, Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination, Chem. Eng. J., 440, 10.1016/j.cej.2022.135862
Fang, 2022, Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability, Sol. Energy Mater. Sol. Cells, 237, 10.1016/j.solmat.2021.111559
Liu, 2021, Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications, Adv. Funct. Mater., 31
Liu, 2018, Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, 14
Chen, 2022, Highly stable MXene-based phase change composites with enhanced thermal conductivity and photothermal storage capability, ACS Appl. Energy Mater., 5, 11669, 10.1021/acsaem.2c02140
Do, 2020, Recycling of pineapple leaf and cotton waste fibers into heat-insulating and flexible cellulose aerogel composites, J. Polym. Environ., 29, 1112, 10.1007/s10924-020-01955-w
Ren, 2022, Transparent, robust, and machinable hybrid silica aerogel with a “rigid-flexible” combined structure for thermal insulation, oil/water separation, and self-cleaning, J. Colloid Interface Sci., 623, 1101, 10.1016/j.jcis.2022.05.100
Wang, 2022, Polyethylene glycol/nanofibrous kevlar aerogel composite: fabrication, confinement effect, thermal energy storage and insulation performance, Mater. Today Commun., 32
Wu, 2022, Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion, Energy Convers. Manag., 256, 10.1016/j.enconman.2022.115361
Liu, 2021, Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage, Sol. Energy Mater. Sol. Cells, 230, 10.1016/j.solmat.2021.111187
Quan, 2023, Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity, Energy, 262, 10.1016/j.energy.2022.125505
Ye, 2022, Shape-stable MXene/sodium alginate/carbon nanotubes hybrid phase change material composites for efficient solar energy conversion and storage, Compos. Sci. Technol., 230, 10.1016/j.compscitech.2022.109794