Shape maps for second order partial differential equations

Journal de Mathématiques Pures et Appliquées - Tập 107 - Trang 615-637 - 2017
O. Rossi1,2, D.J. Saunders1, G.E. Prince3,4
1Department of Mathematics, Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
2Department of Mathematics, Ghent University, Belgium
3Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia
4The Australian Mathematical Sciences Institute, c/o The University of Melbourne, Victoria 3010, Australia

Tài liệu tham khảo

Crampin, 1984, The geodesic spray, the vertical projection, and Raychaudhuri's equation, Gen. Relativ. Gravit., 16, 675, 10.1007/BF00767860 Crampin, 1984, A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics, J. Phys. A, Math. Gen., 17, 1437, 10.1088/0305-4470/17/7/011 Dasgupta, 2009, Kinematics of geodesic flows in stringy black hole backgrounds, Phys. Rev. D, 79, 10.1103/PhysRevD.79.124004 Frölicher, 1956, Theory of vector valued differential forms. Part I, Indag. Math., 18, 338, 10.1016/S1385-7258(56)50046-7 Hawking, 1973 Hawking, 1970, The singularities of gravitational collapse and cosmology, Proc. R. Soc. Lond. A, 314, 529, 10.1098/rspa.1970.0021 Jerie, 2000, A general Raychaudhuri's equation for second-order differential equations, J. Geom. Phys., 34, 226, 10.1016/S0393-0440(99)00065-0 Kar Sayan, 2007, The Raychaudhuri equations: a brief review, Pramana, 69, 49, 10.1007/s12043-007-0110-9 Krupková, 2008, Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations, 837 Natário, 2005, Relativity and singularities – a short introduction for mathematicians, Resen. Inst. Mat. Estat. Univ. Sao Paulo, 6, 309 Poisson, 2004 Raychaudhuri, 1955, Relativistic cosmology I, Phys. Rev., 98, 1123, 10.1103/PhysRev.98.1123 Rossi, 2014, Dual jet bundles, Hamiltonian systems and connections, Differ. Geom. Appl., 35, 178, 10.1016/j.difgeo.2014.03.010 Saunders, 1989 Saunders, 1997, A new approach to the nonlinear connection associated with second-order (and higher-order) differential equation fields, J. Phys. A, Math. Gen., 30, 1739, 10.1088/0305-4470/30/5/034 Saunders, 2016, Tangent bundle geometry induced by second order partial differential equations, J. Math. Pures Appl., 106, 296, 10.1016/j.matpur.2016.02.011 Stephani, 2003