Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Frank, S. P., Poncharal, P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).
Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).
Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002).
Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).
Kociak, M. et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001).
Tang, Z. K. et al. Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001).
Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).
Walters, D. A. et al. Elastic strain of freely suspended single-walled carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999).
Yu, M.-F., Files, B. S., Arepalli, S. & Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).
Vigolo, B. et al. Macroscopic fibers and ribbon of oriented carbon nanotubes. Science 290, 1331–1334 (2000).
Zhu, H. W. et al. Direct synthesis of long single-walled carbon nanotube strands. Science 296, 884–886 (2002).
Ericson, L. M. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).
Li, Y., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).
Zhang, M. et al. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306, 1358–1361 (2004).
Rinzler, A. G. et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 67, 29–37 (1998).
Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).
Fan, S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999).
Murakami, Y. et al. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 385, 298–303 (2004).
Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).
Cao, A., Dickrell, P. L., Sawyer, W. G., Ghasemi-Nejhad, M. N. & Ajayan, P. M. Super compressible foamlike carbon nanotube films. Science 310, 1307–1310 (2005).
Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).
Nguyen, C. V. et al. Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett. 2, 1079–1081 (2002).
Fan, J. G., Dyer, D., Zhang, G. & Zhao, Y.-P. Nanocarpet effect: Pattern formation during the wetting of vertically aligned nanorod arrays. Nano Lett. 4, 2133–2138 (2004).
Correa-Duarte, M. A. et al. Fabrication and biocompatibility of carbon nanotube-based 3D networks as scafolds for cell seeding and growth. Nano Lett. 4, 2233–2236 (2004).
Liu, H. et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew. Chem. 43, 1146–1149 (2004).
Chakrapani, N., Wei, B., Carrillo, A., Ajayan, P. & Kane, R. S. Capillary-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl Acad. Sci. 101, 4009–4013 (2004).
Ko, H., Peleshanko, S. & Tsukruk, V. V. Combing and bending of carbon nanotube arrays with confined microfluidic flow on patterned surfaces. J. Phys. Chem. 108, 4385–4393 (2004).
Whitten, P. G., Spinks, G. M. & Wallace, G. G. Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43, 1891–1896 (2005).
Zhong, G. et al. Large-area synthesis of carbon nanofibers by low-power microwave plasma-assisted CVD. Chem. Vapor Dep. 10, 125–128 (2004).
Futaba, D. N. et al. 84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J. Phys. Chem. B 110, 8035–8038 (2006).
Duesberg, G. S., Loa, I., Burghard, M., Syassen, K. & Roth, S. Polarized raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436–5439 (2000).
Murakami, Y. et al. Polarization dependence of resonant Raman scattering from vertically aligned single-walled carbon nanotube films. Phys. Rev. B 71, 085403 (2005).
Klug, H. & Alexander, L. E. (eds) in X-ray Diffraction Procedures 2nd edn (Wiley, New York, 1974).
Lovell, R. & Mitchell, G. R. Moleular-orientation distribution derived from an arbitrary reflection. Acta Crystallogr. A 37, 135–137 (1981).
Yang, C.-M., Kaneko, K., Yudasaka, M. & Iijima, S. Effect of purification on pore structure of hipco single-walled carbon nanotube aggregates. Nano Lett. 2, 385–388 (2002).
Zhao, D. et al. Triblock copolymer synthesis of mesoporous silica with periodic 50–300 Angstrom pores. Science 279, 548–552 (1998).
Zhao, D. et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).
Yamada, T., Zhou, H.S., Asai, K. & Honma, I. Pore size controlled mesoporous silicate powder prepared by triblock copolymer templates. Mater. Lett. 56, 93–96 (2002).
Shirashi, S., Kurihara, H., Okabe, K., Hulicova, D. & Oya, A. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco ™ Buckytubes ™) in propylene carbonate electrolytes. Electrochem. Commun. 4, 593–598 (2002).
Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).
Du, C., Yeh, J. & Pan, N. High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350–353 (2005).
Xu, B. et al. Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors. J. Power Sources 158, 773–778 (2006).
Hiraoka, T. et al. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J. Am. Chem. Soc. 128, 13338–13339 (2006).
International Tables for X-ray Crystallography Vol. II (Reidel, Boston, MA, 1959 and 1972).