Shape constrained additive models

Natalya Pya1, Simon N. Wood1
1Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, B.F. (eds.) Second International Symposium on Information Theory. Academiai Kiado, Budapest (1973)

Bollaerts, K., Eilers, P., van Mechelen, I.: Simple and multiple P-splines regression with shape constraints. Br. J. Math. Stat. Psychol. 59, 451–469 (2006)

Brezger, A., Steiner, W.: Monotonic regression based on Bayesian P-splines: an application to estimating price response functions from store-level scanner data. J. Bus. Econ. Stat. 26(1), 90–104 (2008)

Claeskens, G., Krivobokova, T., Opsomer, J.: Asymptotic properties of penalized spline estimators. Biometrica 96(3), 529–544 (2009)

Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31, 377–403 (1979)

De Boor, C.: A Practical Guide to Splines. Cambridge University Press, Cambridge (1978)

Dunson, D.: Bayesian semiparametric isotonic regression for count data. J. Am. Stat. Assoc. 100(470), 618–627 (2005)

Dunson, D., Neelon, B.: Bayesian inference on order-constrained parameters in generalized linear models. Biometrics 59, 286–295 (2003)

Eilers, P., Marx, B.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11, 89–121 (1996)

Elliott, P., Shaddick, G., Kleinschmidt, I., Jolley, D., Walls, P., Beresford, J., Grundy, C.: Cancer incidence near municipal solid waste incinerators in Great Britain. Br. J. Cancer 73, 702–710 (1996)

Fritsch, F., Carlson, R.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

Golub, G., van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman & Hall, New York (1990)

He, X., Shi, P.: Monotone B-spline smoothing. J. Am. Stat. Assoc. 93(442), 643–650 (1998)

Holmes, C., Heard, N.: Generalized monotonic regression using random change points. Stat. Med. 22, 623–638 (2003)

Kauermann, G., Krivobokova, T., Fahrmeir, L.: Some asymptotic results on generalized penalized spline smoothing. J. R. Stat. Soc. B 71(2), 487–503 (2009)

Kauermann, G., Opsomer, J.: Data-driven selection of the spline dimension in penalized spline regression. Biometrika 98(1), 225–230 (2011)

Kelly, C., Rice, J.: Monotone smoothing with application to dose-response curves and the assessment of synergism. Biometrics 46, 1071–1085 (1990)

Kim, Y.-J., Gu, C.: Smoothing spline gaussian regression: more scalable computation via efficient approximation. J. R. Stat. Soc: Ser. B. 66(2), 37–356 (2004)

Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13(1), 183–212 (2004)

Li, Y., Ruppert, D.: On the asymptotics of penalized splines. Biometrika 95(2), 415–436 (2008)

Marra, G., Wood, S.N.: Coverage properties of confidence intervals for generalized additive model components. Scand. J. Stat. 39(1), 53–74 (2012)

Meyer, M.: Inference using shape-restricted regression splines. Ann. Appl. Stat. 2(3), 1013–1033 (2008)

Meyer, M.: Constrained penalized splines. Can. J. Stat. 40(1), 190–206 (2012)

Meyer, M., Woodroofe, M.: On the degrees of freedom in shape-restricted regression. Ann. Stat. 28(4), 1083–1104 (2000)

Nychka, D.: Bayesian confidence intervals for smoothing splines. J. Am. Stat. Assoc. 88, 1134–1143 (1988)

Peng, R., Welty, L.: The NMMAPSdata package. R News 4(2), 10–14 (2004)

Ramsay, J.: Monotone regression splines in action (with discussion). Stat. Sci. 3(4), 425–461 (1988)

Rousson, V.: Monotone fitting for developmental variables. J. Appl. Stat. 35(6), 659–670 (2008)

Ruppert, D.: Selecting the number of knots for penalized splines. J. Comput. Graph. Stat. 11(4), 735–757 (2002)

Silverman, B.: Some aspects of the spline smoothing approach to nonparametric regression curve fitting. J. R. Stat. Soc.: Ser. B. 47, 1–52 (1985)

Shaddick, G., Choo, L., Walker, S.: Modelling correlated count data with covariates. J. Stat. Comput. Simul. 77(11), 945–954 (2007)

Villalobos, M., Wahba, G.: Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities. J. Am. Stat. Assoc. 82(397), 239–248 (1987)

Wahba, G.: Bayesian confidence intervals for the cross validated smoothing spline. J. R. Stat. Soc: Ser. B. 45, 133–150 (1983)

Wang, J., Meyer, M.: Testing the monotonicity or convexity of a function using regression splines. Can. J. Stat. 39(1), 89–107 (2011)

Wood, S.: Monotonic smoothing splines fitted by cross validation. SIAM J. Sci. Comput. 15(5), 1126–1133 (1994)

Wood, S.: Partially specified ecological models. Ecol. Monogr. 71(1), 1–25 (2001)

Wood, S.: Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004)

Wood, S.: Generalized Additive Models. An Introduction with R. Chapman & Hall, Boca Raton (2006a)

Wood, S.: On confidence intervals for generalized additive models based on penalized regression splines. Aust. N. Z. J. Stat. 48(4), 445–464 (2006b)

Wood, S.: Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Stat. Soc. B 70(3), 495–518 (2008)

Wood, S.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73(1), 1–34 (2011)

Zhang, J.: A simple and efficient monotone smoother using smoothing splines. J. Nonparametr. Stat. 16(5), 779–796 (2004)