Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis

Annual Review of Chemical and Biomolecular Engineering - Tập 7 Số 1 - Trang 327-348 - 2016
Aleksey Ruditskiy1, Hsin‐Chieh Peng1, Younan Xia2,1,3
1School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
3the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, Georgia 30332,

Tóm tắt

The ability to control the shape of metal nanocrystals allows us to not only maneuver their physicochemical properties but also optimize their activity in a variety of applications. Heterogeneous catalysis, in particular, would benefit tremendously from the availability of metal nanocrystals with controlled shapes and well-defined facets or surface structures. The immediate benefits may include significant enhancements in catalytic activity and/or selectivity along with reductions in the materials cost. We provide a brief account of recent progress in the development of metal nanocrystals with controlled shapes and thereby enhanced catalytic performance for several reactions, including formic acid oxidation, oxygen reduction, and hydrogenation. In addition to monometallic nanocrystals, we also cover a bimetallic system, in which the two metals are formulated as alloyed, core-shell, or core-frame structures. We hope this article will provide further impetus for the development of next-generation heterogeneous catalysts essential to a broad range of applications.

Từ khóa


Tài liệu tham khảo

10.1002/9783527619474

10.1002/anie.200461215

10.1007/s11144-009-5531-7

10.1016/j.cattod.2004.07.059

10.1126/science.1135941

10.1073/pnas.82.8.2207

10.1016/0039-6028(92)90870-C

10.1002/anie.201102619

10.1038/nmat2371

10.1002/smll.200701295

10.1021/jp993593c

10.1021/cr030063a

10.1073/pnas.0805691105

10.1016/0021-9517(82)90016-1

10.1002/anie.201201557

10.1002/anie.201103002

10.1016/j.coche.2013.02.003

10.1021/ja106679z

10.1002/anie.201207186

10.1039/C5NR02529J

10.1038/nchem.623

10.1103/PhysRevLett.81.2819

10.1021/jz4024699

10.1038/nmat1223

10.1002/anie.200802248

10.1557/mrs.2014.167

10.1021/ja106394k

10.1002/anie.201105200

10.1021/nn100093y

10.1002/anie.200802750

10.1021/ja907549n

10.1021/ja102177r

10.1021/ja2063617

10.1021/nl400893p

10.1021/ja0688023

10.1021/jacs.5b04641

10.1021/nn900220k

10.1021/acs.nanolett.5b00158

10.1021/cm402023g

10.1021/nl060069q

10.1021/ja103655f

10.1021/nn401363e

10.1002/anie.201206044

10.1073/pnas.1222109110

10.1021/ja906954f

10.1002/adma.201302820

10.1039/C5CS00049A

10.1016/j.jpowsour.2008.03.075

10.1002/cctc.201500094

10.1021/ja9059409

10.1039/C2EE02866B

10.1002/cssc.201300479

10.1021/nn501919e

10.1021/ja408018j

10.1016/j.apcatb.2004.06.021

10.1039/c1cc11004g

10.1021/jp312859x

10.1016/j.nantod.2008.09.002

10.1002/anie.201007859

10.1021/ja803818k

10.1002/cctc.200900231

10.1021/jp307768h

10.1039/C4CC02494J

10.1021/jp062623q

10.1021/nl0716000

10.1021/ja809936n

10.1021/ja204557m

10.1002/chem.201203688

10.1021/ja200329p

10.1002/anie.200504386

10.1038/nmat1840

10.1038/nchem.367

10.1021/nl903717z

10.1021/nl104094p

10.1021/nl3032795

10.1021/ja303950v

10.1021/nl401881z

10.1002/cssc.201400051

10.1021/ja903247x

10.1021/cs501176b

10.1021/ja209121x

10.1038/nmat2156

10.1021/ja505716v

10.1021/acsnano.5b03525

10.1021/nl501205j

10.1021/nn506387w

10.1038/ncomms8594

10.1126/science.aab0801

10.1002/smll.201402799

10.1126/science.1249061

10.1039/c3cc46465b

10.1021/acs.nanolett.5b00414

10.1126/science.aab1343

10.1021/cm4022479

10.1007/s11244-006-0053-2

10.1021/jp8108946

10.1021/la201007m

10.1021/nl304703w

10.1039/C4TA05250A

10.1021/cr500486u

10.1002/anie.201406468