Shape Accuracy and Residual Stress Distribution of Nano-molded Semicrystalline Polymer: A Simulation Study
Tóm tắt
The shape accuracy and residual stress distribution of a nano-molded semicrystalline polymer are studied by molecular dynamics simulations. Semicrystalline polyethylene flakes are obtained by continuous cooling inside templates with four shapes. We find that the curvature of contour curve near template corners decreases with corner angle. A simple 2D shape model of minimum surface energy is proposed to understand the shapes for repulsive and attractive templates. The confinement of template induces highly ordered chain packing in surface region. According to the spacial distribution of local stress, we find the contracting stress caused by volume shrinkage during cooling concentrates on the chains perpendicular to the direction of relative stress principal. The distribution of von Mises stress indicates the outer layer of semicrystalline polymer flake has lower distortion. Our results provide a theoretical insight for better nano-molding techniques.
Tài liệu tham khảo
Mohammadi, E.; Qu, G.; Kafle, P.; Jung, S. H.; Lee, J. K.; Diao, Y. Design rules for dynamic-template-directed crystallization of conjugated polymers. Mol. Syst. Des. Eng. 2020, 5, 125–138.
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J. Confined crystallization of polymers within anodic aluminum oxide templates. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1179–1194.
Shin, K.; Woo, E.; Jeong, Y. G.; Kim, C.; Huh, J.; Kim, K. W. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 2007, 40, 6617–6623.
Hu, Z.; Baralia, G.; Bayot, V.; Gohy, J. F.; Jonas, A. M. Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Lett. 2005, 5, 1738–1743.
Cao, B. Y.; Yang, M.; Hu, G. J. Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling. RSC Adv. 2016, 6, 7553–7559.
Michell, R. M.; Müller, A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54–55, 183–213.
Nakagawa, S.; Marubayashi, H.; Nojima, S. Crystallization of polymer chains confined in nanodomains. Eur. Polym. J. 2015, 70, 262–275.
Liu, G.; Müller, A. J.; Wang, D. Confined crystallization of polymers within nanopores. Acc. Chem. Res. 2021, 54, 3028–3038.
Maiz, J.; Martin, J.; Mijangos, C. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes. Langmuir 2012, 28, 12296–12303.
Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J. Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 2013, 54, 4059–4077.
Lin, M. C.; Nandan, B.; Chen, H. L. Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels. Soft Matter 2012, 8, 7306.
Huang, S.; Jiang, S. Structures and morphologies of biocompatible and biodegradable block copolymers. RSC Adv. 2014, 4, 24566–24583.
Jiang, Q.; Ward, M. D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2014, 43, 2066–2079.
Su, Y.; Liu, G.; Xie, B.; Fu, D.; Wang, D. Crystallization features of normal alkanes in confined geometry. Acc. Chem. Res. 2014, 47, 192–201.
Yung, K. L.; Kong, J.; Xu, Y. Studies on flow behaviors of polymer melts in nanochannels by wetting actions. Polymer 2007, 48, 7645–7652.
Woo, E.; Huh, J.; Jeong, Y. G.; Shin, K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys. Rev. Lett. 2007, 98, 136103.
Duran, H.; Steinhart, M.; Butt, H. J.; Floudas, G. From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett. 2011, 11, 1671–1675.
Suzuki, Y.; Duran, H.; Steinhart, M.; Butt, H. J.; Floudas, G. Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter 2013, 9, 2621–2628.
Wu, H.; Wang, W.; Huang, Y.; Su, Z. Orientation of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromol. Rapid Commun. 2009, 30, 194–198.
Annicchiarico, D.; Alcock, J. R. Review of factors that affect shrinkage of molded part in injection molding. Mater. Manuf. Process. 2014, 29, 662–682.
Santis, F. D.; Pantani, R.; Speranza, V.; Titomanlio, G. Analysis of shrinkage development of a semicrystalline polymer during injection molding. Ind. Eng. Chem. Res. 2010, 49, 2469–2476.
Teng, C.; Li, L.; Wang, Y.; Wang, R.; Chen, W.; Wang, X.; Xue, G. How thermal stress alters the confinement of polymers vitrificated in nanopores. J. Chem. Phys. 2017, 146, 203319.
Guan, X.; Wang, J.; Hu, W. Monte carlo simulation of strain-enhanced stereocomplex polymer crystallization. J. Phys. Chem. B 2018, 122, 10928–10933.
Bresme, F.; Cámara, L. G. Computer simulation studies of crystallization under confinement conditions. Chem. Geol. 2006, 230, 197–206.
Cámara, L. G.; Bresme, F. Molecular dynamics simulations of crystallization under confinement at triple point conditions. J. Chem. Phys. 2003, 119, 2792–2800.
Cai, T.; Qian, Y.; Ma, Y.; Ren, Y.; Hu, W. Polymer crystallization confined in hard spherical microdomains of diblock copolymers. Macromolecules 2009, 42, 3381–3385.
Ming, Y.; Zhou, Z.; Zhang, S.; Wei, Y.; Hao, T.; Nie, Y. Molecular simulation of crystallization of polymers confined in cylindrical nanodomain. Polymer 2020, 206, 122818.
Hu, W.; Cai, T.; Ma, Y.; K. Hobbs, J.; Farrance, O.; Reiter, G. Polymer crystallization under nano-confinement of droplets studied by molecular simulations. Faraday Discuss. 2009, 143, 129–141.
Wang, M.; Hu, W.; Ma, Y.; Ma, Y. Q. Confined crystallization of cylindrical diblock copolymers studied by dynamic Monte Carlo simulations. J. Chem. Phys. 2006, 124, 244901.
Zhang, C.; Sha, Y.; Zhang, Y.; Cai, T.; Li, L.; Zhou, D.; Wang, X.; Xue, G. Nanostructures and dynamics of isochorically confined amorphous drug mediated by cooling rate, interfacial, and intermolecular interactions. J. Phys. Chem. B 2017, 121, 10704–10716.
Casas, M. T.; Michell, R. M.; Blaszczyk-Lezak, I.; Puiggali, J.; Mijangos, C.; Lorenzo, A. T.; Müller, A. J. Self-assembly of semicrystalline PE-b-PS diblock copolymers within AAO nanoporous templates. Polymer 2015, 70, 282–289.
Rigby, D.; Roe, R. J. Molecular dynamics simulation of polymer liquid and glass. I. Glass transition. J. Chem. Phys. 1987, 87, 7285.
Esselink, K.; Hilbers, P. A. J.; van Beest, B. W. H. Molecular dynamics study of nucleation and melting of n-alkanes. J. Chem. Phys. 1994, 101, 9033–9041.
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447.
Zhang, W.; Larson, R. G. Effect of flow-induced nematic order on polyethylene crystal nucleation. Macromolecules 2020, 53, 7650–7657.
Gao, H.; Menzel, T. P. W.; Müser, M. H.; Mukherji, D. Comparing simulated specific heat of liquid polymers and oligomers to experiments. Phys. Rev. Mater. 2021, 5, 065605.
Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: active contour models. Int. J. Comput. Vis. 1988, 1, 321–331.
Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 1983, 28, 784–805.
Lechner, W.; Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 2008, 129, 114707.
Luo, C.; Kröger, M.; Sommer, J. U. Entanglements and crystallization of concentrated polymer solutions: molecular dynamics simulations. Macromolecules 2016, 49, 9017–9025.
Everaers, R.; Sukumaran, S. K.; Grest, G. S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Rheology and microscopic topology of entangled polymeric liquids. Science 2004, 303, 823–826.
Luo, C.; Kröger, M.; Sommer, J. U. Molecular dynamics simulations of polymer crystallization under confinement: entanglement effect. Polymer 2017, 109, 71–84.
Vanegas, J. M.; Torres-Sánchez, A.; Arroyo, M. Importance of force decomposition for local stress calculations in biomembrane molecular simulations. J. Chem. Theory Comput. 2014, 10, 691–702.
Ollila, O. H. S.; Risselada, H. J.; Louhivuori, M.; Lindahl, E.; Vattulainen, I.; Marrink, S. J. 3D pressure field in lipid membranes and membrane-protein complexes. Phys. Rev. Lett. 2009, 102, 078101.