Shallow-structure characterization by 2D elastic full-waveform inversion
Tóm tắt
Assessing the effectiveness of elastic full-waveform-inversion (FWI) algorithms when applied to shallow 2D structures in the presence of a complex topography is critically important. By using FWI, we overcome inherent limitations of conventional seismic methods used for near-surface prospecting (acoustic tomography and multichannel spectral analysis of surface waves). The elastic forward problem, formulated in the frequency domain, is based on a mixed finite-element P0-P1 discontinuous Galerkin method to ensure accurate modeling of complex topography effects at a reasonable computing cost. The inversion problem uses an FWI algorithm to minimize the misfit between observed and calculated data. Based on results from a numerical experiment performed on a realistic landslide model inspired from the morphostructure of the Super-Sauze earthflow, we analyzed the effect of using a hierarchical preconditioning strategy, based on a simultaneous multifrequency inversion of damped data, to mitigate the strong nonlinearities coming from the surface waves. This strategy is a key point in alleviating the strong near-surface effects and avoiding convergence toward a local minimum. Using a limited-memory quasi-Newton method improved the convergence level. These findings are analogous to recent applications on large-scale domains, although limited source-receiver offset ranges, low-frequency content of the source, and domination of surface waves on the signal led to some difficulties. Regarding the impact of data decimation on the inversion results, we have learned that an inversion restricted to the vertical data component can be successful without significant loss in terms of parameter imagery resolution. In our investigations of the effect of increased source spacing, we found that a sampling of 4 m (less than three times the theoretical maximum of one half-wavelength) led to severe aliasing.
Từ khóa
Tài liệu tham khảo
Bodet, L., 2005, Limites théoriques et expérimentales de l’inversion de la dispersion des ondes de Rayleigh: Apport de la modélisation numérique et physique: Ph.D. dissertation, Bureau de recherches geologiques et minières/Laboratoire Central des Sponts et Chaussées (BRGM/LCPC).
Brossier, R., 2009, Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion des formes d’onde: Dévelopements méthodologiques et applications: Ph.D. dissertation, Université de Nice-Sophia-Antipolis.
Červený V., 1977, Ray theory in seismology
Gélis, C., 2005, Inversion des formes d’onde élastiques dans le domaine espace-fréquence en deux dimensions: Application à la caractérisation de la subsurface dans le cadre de la détection de cavités souterraines: Ph.D. dissertation, Université de Nice-Sophia-Antipolis.
Hermann R., 1991, Surface wave inversion program
Lai, C. G. , 1998, Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization: Ph.D. dissertation, Georgia Institute of Technology.
MUMPS Team, 2009, MUMPS — MUltifrontal Massively Parallel Solver users’ guide, v. 4.9.2: Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications (ENSEEIHT), accessed 8 January 2011, http://mumps.enseeiht.fr/doc/userguide_4.9.2.pdf.
Nazarian S., 1984, Near Surface Geophysics, 3, 31
Nazarian S., 1986, Transportation Research Record, 1070, 132
Park, C., R. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on a multichannel record: 68th Annual International Meeting, SEG, Expanded Abstracts, 1377–1380.
Romdhane, A., G. Grandjean, A. Bitri, and F. Réjiba, 2008, Inversion of surface waves dispersion in complex structures: 21st Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), Poster Session.
Romdhane, A., G. Grandjean, A. Bitri, and F. Réjiba, 2009, Full waveform inversion of seismic data for 2D shallow structures imagery: 71st Conference and Technical Meeting, EAGE, Extended Abstracts, P002.
Stokoe I. K. H., 1985, Proceedings of the Measurement and Use of Shear Wave Velocity for Evaluating Dynamic Soil Properties, 1
Stokoe I. K. H., 1988, American Society of Civil Engineers Special Publication, 20, 264
Tarantola A., 1987, Elsevier
van der Sluis A., 1987, Seismic tomography, with applications in global seismology and exploration geophysics, 49
Vidale D., 1988, Bulletin of the Seismological Society of America, 78, 2062
Viktorov I. A., 1965, Physical theory applications