Shallow-structure characterization by 2D elastic full-waveform inversion

Geophysics - Tập 76 Số 3 - Trang R81-R93 - 2011
Anouar Romdhane1,2,3,4,5, Gilles Grandjean1,2,3,4,5, Romain Brossier1,2,3,4,5, Fayçal Réjiba1,2,3,4,5, S. Operto1,2,3,4,5, J. Virieux1,2,3,4,5
1BRGM, Natural Risks and CO2 Storage Security Division, Orléans, France..
2Formerly BRGM, Orléans, France; presently SINTEF, Trondheim, Norway..
3Universite Joseph Fourier, Laboratoire de Geophysique Interne et Tectonophysique, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Grenoble, France..
4Université Nice–Sophia Antipolis, Géoazur, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Observatoire de la Côte d’Azur, Villefranche-sur-mer, France..
5Université Pierre et Marie Curie, Paris, France

Tóm tắt

Assessing the effectiveness of elastic full-waveform-inversion (FWI) algorithms when applied to shallow 2D structures in the presence of a complex topography is critically important. By using FWI, we overcome inherent limitations of conventional seismic methods used for near-surface prospecting (acoustic tomography and multichannel spectral analysis of surface waves). The elastic forward problem, formulated in the frequency domain, is based on a mixed finite-element P0-P1 discontinuous Galerkin method to ensure accurate modeling of complex topography effects at a reasonable computing cost. The inversion problem uses an FWI algorithm to minimize the misfit between observed and calculated data. Based on results from a numerical experiment performed on a realistic landslide model inspired from the morphostructure of the Super-Sauze earthflow, we analyzed the effect of using a hierarchical preconditioning strategy, based on a simultaneous multifrequency inversion of damped data, to mitigate the strong nonlinearities coming from the surface waves. This strategy is a key point in alleviating the strong near-surface effects and avoiding convergence toward a local minimum. Using a limited-memory quasi-Newton method improved the convergence level. These findings are analogous to recent applications on large-scale domains, although limited source-receiver offset ranges, low-frequency content of the source, and domination of surface waves on the signal led to some difficulties. Regarding the impact of data decimation on the inversion results, we have learned that an inversion restricted to the vertical data component can be successful without significant loss in terms of parameter imagery resolution. In our investigations of the effect of increased source spacing, we found that a sampling of 4 m (less than three times the theoretical maximum of one half-wavelength) led to severe aliasing.

Từ khóa


Tài liệu tham khảo

10.1190/1.3223315

Bodet, L., 2005, Limites théoriques et expérimentales de l’inversion de la dispersion des ondes de Rayleigh: Apport de la modélisation numérique et physique: Ph.D. dissertation, Bureau de recherches geologiques et minières/Laboratoire Central des Sponts et Chaussées (BRGM/LCPC).

10.1190/1.2213051

10.1111/j.1365-246X.2006.03156.x

Brossier, R., 2009, Imagerie sismique à deux dimensions des milieux visco-élastiques par inversion des formes d’onde: Dévelopements méthodologiques et applications: Ph.D. dissertation, Université de Nice-Sophia-Antipolis.

10.1016/j.cageo.2010.09.013

10.1190/1.3215771

10.1111/j.1365-246X. 2008.03839.x

10.1017/CBO9780511529399

Červený V., 1977, Ray theory in seismology

10.1111/j.1365-246X.2006.03120.x

10.1190/1.3196857

10.1016/S1464-1909(00)00102-7

10.1190/1.2159049

10.1190/1.2752744

Gélis, C., 2005, Inversion des formes d’onde élastiques dans le domaine espace-fréquence en deux dimensions: Application à la caractérisation de la subsurface dans le cadre de la détection de cavités souterraines: Ph.D. dissertation, Université de Nice-Sophia-Antipolis.

10.1111/j.1365-246X.2006.03135.x

Grandjean G., 2006, Near Surface Geophysics, 4, 367, 10.3997/1873-0604.2006010

10.1016/j.jappgeo.2004.04.004

10.1016/j.crte.2006.03.013

10.1016/j.cageo.2004.06.009

Hermann R., 1991, Surface wave inversion program

Lai, C. G. , 1998, Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization: Ph.D. dissertation, Georgia Institute of Technology.

10.1016/S0065-2687(06) 48008-0

MUMPS Team, 2009, MUMPS — MUltifrontal Massively Parallel Solver users’ guide, v. 4.9.2: Ecole Nationale Supérieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et des Télécommunications (ENSEEIHT), accessed 8 January 2011, http://mumps.enseeiht.fr/doc/userguide_4.9.2.pdf.

Nazarian S., 1984, Near Surface Geophysics, 3, 31

Nazarian S., 1986, Transportation Research Record, 1070, 132

10.1007/b98874

10.1029/2005JB003835

Park, C., R. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on a multichannel record: 68th Annual International Meeting, SEG, Expanded Abstracts, 1377–1380.

10.1190/1.1444590

10.1111/j.1365-246X.2006. 02978.x

10.1111/j.1365-246X.1991.tb03461.x

10.1190/1.1444597

10.1046/j.1365-246X.1998.00498.x

10.1190/1.1444598

10.1111/j.1365-246X.2004.02442.x

10.1520/GTJ11132J

Romdhane, A., G. Grandjean, A. Bitri, and F. Réjiba, 2008, Inversion of surface waves dispersion in complex structures: 21st Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP), Poster Session.

Romdhane, A., G. Grandjean, A. Bitri, and F. Réjiba, 2009, Full waveform inversion of seismic data for 2D shallow structures imagery: 71st Conference and Technical Meeting, EAGE, Extended Abstracts, P002.

10.1016/S0165-2125(99)00023-2

10.1190/1.2210969

10.1785/012008t020

10.1046/j.1365-2478.2001.00279.x

10.1190/1.1512811

10.1190/1.1649391

10.1190/1.3223313

10.3997/1873-0604.2004015

10.1016/j.cageo.2008.04.013

Stokoe I. K. H., 1985, Proceedings of the Measurement and Use of Shear Wave Velocity for Evaluating Dynamic Soil Properties, 1

Stokoe I. K. H., 1988, American Society of Civil Engineers Special Publication, 20, 264

10.1190/1.3250266

10.1111/j.1365-2478.1984. tb00751.x

Tarantola A., 1987, Elsevier

10.1190/1.1884827

van der Sluis A., 1987, Seismic tomography, with applications in global seismology and exploration geophysics, 49

Vidale D., 1988, Bulletin of the Seismological Society of America, 78, 2062

Viktorov I. A., 1965, Physical theory applications

10.1111/j.1365-2478. 1996.tb00175.x

10.1111/j.1365-2478.1996. tb00176.x

10.1190/1.1443499

10.1190/1.3238367

10.1190/1.1444578