Shakedown of porous materials

International Journal of Plasticity - Tập 95 - Trang 123-141 - 2017
J. Zhang1, W.Q. Shen1, A. Oueslati1, G. De Saxcé1
1Université Lille 1, Cité scientifique, F59655 Villeneuve d’Ascq, France

Tài liệu tham khảo

Abdel-Karim, 2009, Modified kinematic hardening rules for simulations of ratchetting, Int. J. Plasticity, 25, 1560, 10.1016/j.ijplas.2008.10.004 Abdel-Karim, 2010, An evaluation for several kinematic hardening rules on prediction of multiaxial stress-controlled ratchetting, Int. J. Plasticity, 26, 711, 10.1016/j.ijplas.2009.10.002 Bleich, 1932, Über die Bemessug statisch unbestimmter Ztahltragwerk unter Berücksichtgung des elastisch-plastischen Verhaltens des Baustoffes, Bauingenieur, 13, 2610 Bleyer, 2015 Charkaluk, 2009, Revisiting the Dang Van criterion, Procedia Eng., 1, 143, 10.1016/j.proeng.2009.06.033 Chen, 2015, On the statistical determination of yield strength, ultimate strength and endurance limit of a particle reinforced metal matrix composite (PRMMC) Chen, 2013, Shakedown and optimization analysis of periodic composites Cheng, 2014, A stress-based variational model for ductile porous materials, Int. J. Plasticity, 55, 133, 10.1016/j.ijplas.2013.10.003 Cheng, 2007, Void interaction and coalescence in polymeric materials, Int. J. Solids Struct., 44, 1787, 10.1016/j.ijsolstr.2006.08.007 Chinh, 2007, Shakedown theory for elastic plastic kinematic hardening bodies, Int. J. Plasticity, 23, 1240, 10.1016/j.ijplas.2006.11.003 Coffin, 1954, Trans. ASME, 76, 923 Dang Van, 1973, Sur la résistance à la fatigue des métaux, Sci. Tech. Armement, 47 Dang Van, 1993, Macro-micro approach in high-cycle multiaxial fatigue, 120 de Buhan, 2013, A multiphase model for assessing the overall yield strength of soils reinforced by linear inclusions Garajeu, 1997, Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles, J. Mech. Phys. Solids, 45, 873, 10.1016/S0022-5096(96)00128-7 Gilles, 1992, Analysis of cyclic effects on ductile tearing strength by a local approach of fracture, 137, 269 Gokhfeld, D.A., 1956. Some problems of plastic shakedown of plates and shells (in Russian). Proc. 6th Soviet Conf. Plates and Shells (Bakou), Izd. Nauka, Moscou, 284–291. Gologanu, 1997, Recent extensions of Gurson’s model for porous ductile metals Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth – part I: yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Hachemi, 2014, Limit state of structures made of heterogeneous materials, Int. J. Plasticity, 63, 124, 10.1016/j.ijplas.2014.03.019 Hachemi, 2000, Failure investigation of fiber-reinforced composite materials by shakedown analysis Hibbett, 1998 Hill, 1954 Hodge, 1954, Shake-down of elasto-plastic structures Kobayashi, H., Kusumoto, T., Nakazawa, H., 1991. Cyclic J-R-curve and upper limit characteristic of fatigue crack growth in 2-1/2 Cr-Mo steel, 11th International Conference on Structural Mechanics in Reactor Technology (SMIRT 11), Tokyo, Japan, paper G27/1. Koiter, 1960, vol. 1 Lacroix, 2016, Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loadings, Eur. J. Mechanics/A Solids, 55, 100, 10.1016/j.euromechsol.2015.08.010 Leblond, 1995, An improved Gurson-type model for hardenable ductile metals, Eur. J. Mech. A/Solids, 14, 499 Lemaitre, 1994 Liu, 2005, Lower bound shakedown analysis by the symmetric galerkin boundary element method, Int. J. plasticity, 21, 21, 10.1016/j.ijplas.2004.01.003 Magoariec, 2004, Elastic plastic shakedown of 3D periodic heterogeneous media: a direct numerical approach, Int. J. Plasticity, 20, 1655, 10.1016/j.ijplas.2003.11.011 Maier, 2000, On direct methods for shakedown and limit analysis, Eur. J. Mech. A-Solids, 19, S79 Manson, S. S., 1954. Nat. Advise. Comm. Aero. Tech., Note 2.933. Martin, 1975 Melan, 1936, Theorie statisch unbestimmter Systeme aus ideal plastischem Baustoff, Sitz Ber. Akad. Wiss. Wien IIa, 145 Monchiet, 2007, An improvment of Gurson-type models of porous materials by Eshelby-like trial velocity fields, Comptes Rendus Mécanique, 335, 32, 10.1016/j.crme.2006.12.002 Neal, 1956 Orowan, 1939, Theory of the fatigue of metals, Proc. R. Soc. Lond. A, 171, 79, 10.1098/rspa.1939.0055 Papadopoulos, 1994, A new criterion of fatigue strength for out-of phase bending and torsion of hard metals, Int. J. Fatigue, 16, 377, 10.1016/0142-1123(94)90449-9 Pastor, 2013, Limit analysis and conic programming for Gurson-type spheroid problems Polizzotto, 2010, Shakedown analysis for a class of strengthening materials within the framework of gradient plasticity, Int. J. Plasticity, 26, 1050, 10.1016/j.ijplas.2010.01.006 Save, 1997 Sawczuk, 1969, Evaluation of upper bounds to shakedown loads for shells, J. Mech. Phys. Solids, 17, 291, 10.1016/0022-5096(69)90018-0 Schmidt, R.A., Wilkowski, G.M., Mayfield, M.E., 1991. The International Piping Re- search Group (IPIRG) program. An overview, 11th International Conference on Structural Mechanics in Reactor Technology (SMIRT 11), Tokyo, Japan, paper G23/1. Shen, 2015, Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field, Int. J. Plasticity, 70, 60, 10.1016/j.ijplas.2015.02.012 Simon, 2013, Direct evaluation of the limit states of engineering structures exhibiting limited, nonlinear kinematical hardening, Int. J. Plasticity, 42, 141, 10.1016/j.ijplas.2012.10.008 Soutas-Little, 1999 Symonds, 1951, Shake-down in continuum media, J. Appl. Mech., 18, 85, 10.1115/1.4010224 Taleb, 2009, Multiscale experimental investigations about the cyclic behavior of the 304l ss, Int. J. Plasticity, 25, 1359, 10.1016/j.ijplas.2008.09.004 Thoré, 2009, Closed-form solutions for the hollow sphere model with Coulomb and Drucker Prager materials under isotropic loadings, Comptes-Rendus Mécanique, 337, 260, 10.1016/j.crme.2009.06.030 Weichert, 2014, A historical view on shakedown theory, 169