Shadow Simulated Annealing: A new algorithm for approximate Bayesian inference of Gibbs point processes

Spatial Statistics - Tập 43 - Trang 100505 - 2021
R.S. Stoica1, M. Deaconu2, A. Philippe3, L. Hurtado-Gil4
1Université de Lorraine, CNRS, IECL, F-54000 Nancy, France
2Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
3Université de Nantes, Laboratoire de Mathématiques Jean Leray, Nantes, France
4Departamento de Matemática Aplicada y Estadística, Universidad CEU San Pablo, 28003 Madrid, Spain

Tài liệu tham khảo

Baddeley, 2016 Baddeley, 1995, Area-interaction point processes, Ann. Inst. Statist. Math., 47, 601, 10.1007/BF01856536 Beaumont, 2009, Adaptative approximate Bayesian computation, Biometrika, 96, 983, 10.1093/biomet/asp052 Biau, 2015, New insights into approximate Bayesian computation, Ann. Inst. Henri Poincare, 51, 376 Blum, 2010, Approximate Bayesian computation: A nonparametric perspective, J. Amer. Statist. Assoc., 105, 1178, 10.1198/jasa.2010.tm09448 Caimo, 2011, BayesIan inference for exponential random graph models, Social Networks, 33, 41, 10.1016/j.socnet.2010.09.004 Einasto, 2012, Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network, Astron. Astrophys., 542, 10.1051/0004-6361/201219119 Geman, 1984, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6, 721, 10.1109/TPAMI.1984.4767596 Geyer, 1999, Likelihood inference for spatial point processes Haario, 1991, Simulated annealing process in general state space, Adv. Appl. Probab., 23, 866, 10.2307/1427681 Haario, 1992, Weak convergence of the simulaed annealing process in general state space, Ann. Acad. Sci. Fenn., 17, 39, 10.5186/aasfm.1992.1706 Iosifescu, 1969 Kelly, 1976, A note on Strauss’s model for clustering, Biometrika, 63, 357, 10.1093/biomet/63.2.357 Lavancier, 2016, Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets, Scand. J. Stat., 43, 587, 10.1111/sjos.12193 Liang, 2010, A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants, J. Stat. Comput. Simul., 80, 1007, 10.1080/00949650902882162 Liang, 2016, Adaptive exchange algorithm for sampling from fistributions with intractable normalizing constants, J. Amer. Statist. Assoc., 111, 377, 10.1080/01621459.2015.1009072 van Lieshout, 2000 van Lieshout, 2003, The candy model revisited: properties and inference, Stat. Neerl., 57, 1, 10.1111/1467-9574.00227 van Lieshout, 2006, Perfect simulation for marked point processes, Comput. Statist. Data Anal., 51, 679, 10.1016/j.csda.2006.02.023 Makur, Anuran, Introduction to Markov Mixing, http://www.mit.edu/ a_makur/docs/Markov Chain Mixing Coefficients Ergodicity.pdf. Martinez, 2002 Møller, 2006, An efficient Markov chain Monte Carlo method for distributions with intractable normalizing constants, Biometrika, 93, 451, 10.1093/biomet/93.2.451 Møller, 2004 Murray, 2006, MCMC For doubly-intractable distributions, 359 Roberts, 1996, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika, 83, 95, 10.1093/biomet/83.1.95 Shirota, 2017, Approximate Bayesian computation and model assessment for repulsive spatial point processes, J. Comput. Graph. Statist., 1 Stoica, 2004, A gibbs point process for road extraction in remotely sensed images, Int. J. Comput. Vis., 57, 121, 10.1023/B:VISI.0000013086.45688.5d Stoica, 2007, Cluster detection in spatial data based on Monte Carlo inference, Biom. J., 49(2), 1 Stoica, 2005, Simulated annealing and object point processes : tools for analysis of spatial patterns, Stochastic Process. Appl., 115, 1860, 10.1016/j.spa.2005.06.007 Stoica, 2017, ABC Shadow algorithm: a tool for statistical analysis of spatial patterns, Stat. Comput., 27, 1225, 10.1007/s11222-016-9682-x Stoica, 2015, Spatial patterns analysis in cosmology based on marked point processes Strauss, 1975, A model for clustering, Biometrika, 62, 467, 10.1093/biomet/62.2.467 Tempel, 2014, Galaxy filaments as pearl necklaces, Astron. Astrophys., 572 (A8) Tempel, 2018, BayesIan group finder based on marked point processes. Method and application to the 2MRS data set, Astron. Astrophys., 618 (A61), 1 Tempel, 2016, Bisous model – detecting filamentary pattern in point processes, Astron. Comput., 16, 17, 10.1016/j.ascom.2016.03.004 Tempel, 2014, Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS, Mon. Not. R. Astron. Soc., 438, 3465, 10.1093/mnras/stt2454 Tierney, 1994, Markov chains for exploring posterior distribution (with discussion), Ann. Statist., 22, 1701 van Lieshout, 1994, Stochastic annealing for nearest neighbour point processes with application to object recognition, Adv. Appl. Probab., 26, 281, 10.2307/1427436 Vihrs, 2021, Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation, Scand. J. Stat., 1 Winkler, 2003