Shadow Simulated Annealing: A new algorithm for approximate Bayesian inference of Gibbs point processes
Tài liệu tham khảo
Baddeley, 2016
Baddeley, 1995, Area-interaction point processes, Ann. Inst. Statist. Math., 47, 601, 10.1007/BF01856536
Beaumont, 2009, Adaptative approximate Bayesian computation, Biometrika, 96, 983, 10.1093/biomet/asp052
Biau, 2015, New insights into approximate Bayesian computation, Ann. Inst. Henri Poincare, 51, 376
Blum, 2010, Approximate Bayesian computation: A nonparametric perspective, J. Amer. Statist. Assoc., 105, 1178, 10.1198/jasa.2010.tm09448
Caimo, 2011, BayesIan inference for exponential random graph models, Social Networks, 33, 41, 10.1016/j.socnet.2010.09.004
Einasto, 2012, Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network, Astron. Astrophys., 542, 10.1051/0004-6361/201219119
Geman, 1984, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 6, 721, 10.1109/TPAMI.1984.4767596
Geyer, 1999, Likelihood inference for spatial point processes
Haario, 1991, Simulated annealing process in general state space, Adv. Appl. Probab., 23, 866, 10.2307/1427681
Haario, 1992, Weak convergence of the simulaed annealing process in general state space, Ann. Acad. Sci. Fenn., 17, 39, 10.5186/aasfm.1992.1706
Iosifescu, 1969
Kelly, 1976, A note on Strauss’s model for clustering, Biometrika, 63, 357, 10.1093/biomet/63.2.357
Lavancier, 2016, Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets, Scand. J. Stat., 43, 587, 10.1111/sjos.12193
Liang, 2010, A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants, J. Stat. Comput. Simul., 80, 1007, 10.1080/00949650902882162
Liang, 2016, Adaptive exchange algorithm for sampling from fistributions with intractable normalizing constants, J. Amer. Statist. Assoc., 111, 377, 10.1080/01621459.2015.1009072
van Lieshout, 2000
van Lieshout, 2003, The candy model revisited: properties and inference, Stat. Neerl., 57, 1, 10.1111/1467-9574.00227
van Lieshout, 2006, Perfect simulation for marked point processes, Comput. Statist. Data Anal., 51, 679, 10.1016/j.csda.2006.02.023
Makur, Anuran, Introduction to Markov Mixing, http://www.mit.edu/ a_makur/docs/Markov Chain Mixing Coefficients Ergodicity.pdf.
Martinez, 2002
Møller, 2006, An efficient Markov chain Monte Carlo method for distributions with intractable normalizing constants, Biometrika, 93, 451, 10.1093/biomet/93.2.451
Møller, 2004
Murray, 2006, MCMC For doubly-intractable distributions, 359
Roberts, 1996, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika, 83, 95, 10.1093/biomet/83.1.95
Shirota, 2017, Approximate Bayesian computation and model assessment for repulsive spatial point processes, J. Comput. Graph. Statist., 1
Stoica, 2004, A gibbs point process for road extraction in remotely sensed images, Int. J. Comput. Vis., 57, 121, 10.1023/B:VISI.0000013086.45688.5d
Stoica, 2007, Cluster detection in spatial data based on Monte Carlo inference, Biom. J., 49(2), 1
Stoica, 2005, Simulated annealing and object point processes : tools for analysis of spatial patterns, Stochastic Process. Appl., 115, 1860, 10.1016/j.spa.2005.06.007
Stoica, 2017, ABC Shadow algorithm: a tool for statistical analysis of spatial patterns, Stat. Comput., 27, 1225, 10.1007/s11222-016-9682-x
Stoica, 2015, Spatial patterns analysis in cosmology based on marked point processes
Strauss, 1975, A model for clustering, Biometrika, 62, 467, 10.1093/biomet/62.2.467
Tempel, 2014, Galaxy filaments as pearl necklaces, Astron. Astrophys., 572 (A8)
Tempel, 2018, BayesIan group finder based on marked point processes. Method and application to the 2MRS data set, Astron. Astrophys., 618 (A61), 1
Tempel, 2016, Bisous model – detecting filamentary pattern in point processes, Astron. Comput., 16, 17, 10.1016/j.ascom.2016.03.004
Tempel, 2014, Detecting filamentary pattern in the cosmic web: a catalogue of filaments for the SDSS, Mon. Not. R. Astron. Soc., 438, 3465, 10.1093/mnras/stt2454
Tierney, 1994, Markov chains for exploring posterior distribution (with discussion), Ann. Statist., 22, 1701
van Lieshout, 1994, Stochastic annealing for nearest neighbour point processes with application to object recognition, Adv. Appl. Probab., 26, 281, 10.2307/1427436
Vihrs, 2021, Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation, Scand. J. Stat., 1
Winkler, 2003