Sex differences in the risk of vascular disease associated with diabetes
Tóm tắt
Từ khóa
Tài liệu tham khảo
IDF diabetes atlas - 2017 Atlas. http://www.diabetesatlas.org/resources/2017-atlas.html. Accessed 6 Nov 2018.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement_1):S81–90. https://doi.org/10.2337/dc14-S081.
International Diabetes Federation. Global Diabetes Plan 2011-2021. 2011.
The top 10 causes of death. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 5 Nov 2018.
Rao Kondapally Seshasai S, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41. https://doi.org/10.1056/NEJMoa1008862.
Woodward M, Zhang X, Barzi F, et al. The effects of diabetes on the risks of major cardiovascular diseases and death in the Asia-Pacific region. Diabetes Care. 2003;26(2):360–6 http://www.ncbi.nlm.nih.gov/pubmed/12547863. Accessed 6 Nov 2018.
Peters SAE, Huxley RR, Woodward M. Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775 385 individuals and 12 539 strokes. Lancet. 2014;383(9933):1973–80. https://doi.org/10.1016/S0140-6736(14)60040-4.
Peters SAE, Huxley RR, Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014;57(8):1542–51. https://doi.org/10.1007/s00125-014-3260-6.
Prospective Studies Collaboration and Asia Pacific Cohort Studies Collaboration L, Herrington W, Halsey J, et al. Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018;6(7):538–46. https://doi.org/10.1016/S2213-8587(18)30079-2.
Chatterjee S, Peters SAE, Woodward M, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7. https://doi.org/10.2337/dc15-1588.
Shen Y, Cai R, Sun J, et al. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis. Endocrine. 2017;55(1):66–76. https://doi.org/10.1007/s12020-016-1014-6.
Huxley RR, Peters SAE, Mishra GD, Woodward M. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(3):198–206. https://doi.org/10.1016/S2213-8587(14)70248-7.
Ohkuma T, Peters SAE, Woodward M. Sex differences in the association between diabetes and cancer: a systematic review and meta-analysis of 121 cohorts including 20 million individuals and one million events. Diabetologia. 2018;61(10):2140–54. https://doi.org/10.1007/s00125-018-4664-5.
Recarti C, Sep SJS, Stehouwer CDA, Unger T. Excess cardiovascular risk in diabetic women: a case for intensive treatment. Curr Hypertens Rep. 2015;17(6):45. https://doi.org/10.1007/s11906-015-0554-0.
Woodward M, Peters SA, Huxley RR. Diabetes and the female disadvantage. Women’s Heal. 2015;11(6):833–9. https://doi.org/10.2217/whe.15.67.
Bertram MY, Vos T. Quantifying the duration of pre-diabetes. Aust N Z J Public Health. 2010;34(3):311–4. https://doi.org/10.1111/j.1753-6405.2010.00532.x.
Juutilainen A, Kortelainen S, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care. 2004;27(12):2898–904 http://www.ncbi.nlm.nih.gov/pubmed/15562204. Accessed 7 May 2019.
Peters SAE, Huxley RR, Sattar N, Woodward M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: potential explanations and clinical implications. Curr Cardiovasc Risk Rep. 2015;9(7):36. https://doi.org/10.1007/s12170-015-0462-5.
Peters SAE, Huxley RR, Woodward M. Sex differences in body anthropometry and composition in individuals with and without diabetes in the UK Biobank. BMJ Open. 2016;6(1):e010007. https://doi.org/10.1136/bmjopen-2015-010007.
Wannamethee SG, Papacosta O, Lawlor DA, et al. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia. 2012;55(1):80–7. https://doi.org/10.1007/s00125-011-2284-4.
Arnetz L, Ekberg NR, Alvarsson M. Sex differences in type 2 diabetes: focus on disease course and outcomes. Diabetes Metab Syndr Obes. 2014;7:409–20. https://doi.org/10.2147/DMSO.S51301.
Sattar N. Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract Res Clin Endocrinol Metab. 2013;27(4):501–7. https://doi.org/10.1016/j.beem.2013.05.006.
Peters SAE, Singhateh Y, Mackay D, Huxley RR, Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: a systematic review and meta-analysis. Atherosclerosis. 2016;248:123–31. https://doi.org/10.1016/j.atherosclerosis.2016.03.016.
Logue J, Walker JJ, Colhoun HM, et al. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia. 2011;54(12):3003–6. https://doi.org/10.1007/s00125-011-2313-3.
Paul S, Thomas G, Majeed A, Khunti K, Klein K. Women develop type 2 diabetes at a higher body mass index than men. Diabetologia. 2012;55(5):1556–7. https://doi.org/10.1007/s00125-012-2496-2.
Laviola L, Perrini S, Cignarelli A, et al. Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes. 2006;55(4):952–61 http://www.ncbi.nlm.nih.gov/pubmed/16567516. Accessed 23 Dec 2018.
National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity, and health risk. Arch Intern Med. 2000;160(7):898–904 http://www.ncbi.nlm.nih.gov/pubmed/10761953. Accessed 23 Dec 2018.
Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6:60–75. https://doi.org/10.1016/j.genm.2009.02.002.
Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89(6):2569–75. https://doi.org/10.1210/jc.2004-0165.
Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014;12(1):123. https://doi.org/10.1186/s12916-014-0123-4.
Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr. 2008;99(5):931–40. https://doi.org/10.1017/S0007114507853347.
Kvist H, Chowdhury B, Grangård U, Tylén U, Sjöström L. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr. 1988;48(6):1351–61. https://doi.org/10.1093/ajcn/48.6.1351.
Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr. 1993;58(4):463–7. https://doi.org/10.1093/ajcn/58.4.463.
Peters SAE, Bots SH, Woodward M. Sex differences in the association between measures of general and central adiposity and the risk of myocardial infarction: results from the UK Biobank. J Am Heart Assoc. 2018;7(5). https://doi.org/10.1161/JAHA.117.008507.
Regensteiner JG, Golden S, Huebschmann AG, et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2015;132(25):2424–47. https://doi.org/10.1161/CIR.0000000000000343.
de Mutsert R, Gast K, Widya R, et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands Epidemiology of Obesity Study. Metab Syndr Relat Disord. 2018;16(1):54–63. https://doi.org/10.1089/met.2017.0128.
Faulkner JL, Kennard S, Huby A-C, et al. Progesterone predisposes females to obesity-associated leptin-mediated endothelial dysfunction via upregulating endothelial MR (mineralocorticoid receptor) expression. Hypertens (Dallas). 2019;74(3):678–86. https://doi.org/10.1161/HYPERTENSIONAHA.119.12802.
Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137(15):1614–31. https://doi.org/10.1161/CIRCULATIONAHA.117.032474.
Donahue RP, Rejman K, Rafalson LB, Dmochowski J, Stranges S, Trevisan M. Sex differences in endothelial function markers before conversion to pre-diabetes: does the clock start ticking earlier among women? The Western New York study. Diabetes Care. 2007;30(2):354–9. https://doi.org/10.2337/dc06-1772.
Haffner SM, Miettinen H, Stern MP. Relatively more atherogenic coronary heart disease risk factors in prediabetic women than in prediabetic men. Diabetologia. 1997;40(6):711–7. https://doi.org/10.1007/s001250050738.
Nakhjavani M, Morteza A, Meysamie A, et al. Serum heat shock protein 70 and oxidized LDL in patients with type 2 diabetes: does sex matter? Cell Stress Chaperones. 2011;16(2):195–201. https://doi.org/10.1007/s12192-010-0232-8.
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316. https://doi.org/10.1210/er.2015-1137.
de Ritter R, Sep SJS, van der Kallen CJH, Schram MT, Koster A, Kroon AA, et al. Adverse differences in cardiometabolic risk factor levels between individuals with pre-diabetes and normal glucose metabolism are more pronounced in women than in men: the Maastricht Study. BMJ Open Diabetes Res Care. 2019;7(1):e000787.
National Diabetes Audit - 2012-2013: Report 1, Care Processes and Treatment Targets - NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/national-diabetes-audit-2012-2013-report-1-care-processes-and-treatment-targets. Accessed 26 June 2018.
Clinical Guidelines Task Force. Global Guideline fot Type 2 Diabetes. https://www.idf.org/e-library/guidelines/79-global-guideline-for-type-2-diabetes. Published 2012. Accessed 2 Dec 2018.
Hyun KK, Redfern J, Patel A, et al. Gender inequalities in cardiovascular risk factor assessment and management in primary healthcare. Heart. 2017;103(7):492–8. https://doi.org/10.1136/heartjnl-2016-310216.
Zhao M, Vaartjes I, Graham I, et al. Sex differences in risk factor management of coronary heart disease across three regions. Heart. 2017;103(20):1587–94. https://doi.org/10.1136/heartjnl-2017-311429.
Eapen ZJ, Liang L, Shubrook JH, et al. Current quality of cardiovascular prevention for million hearts: an analysis of 147,038 outpatients from the Guideline Advantage. Am Heart J. 2014;168(3):398–404. https://doi.org/10.1016/J.AHJ.2014.06.007.
Ferrara A, Mangione CM, Kim C, et al. Sex disparities in control and treatment of modifiable cardiovascular disease risk factors among patients with diabetes: Translating Research Into Action for Diabetes (TRIAD) Study. Diabetes Care. 2008;31(1):69–74. https://doi.org/10.2337/dc07-1244.
Franch-Nadal J, Mata-Cases M, Vinagre I, et al. Differences in the cardiometabolic control in type 2 diabetes according to gender and the presence of cardiovascular disease: results from the eControl study. Int J Endocrinol. 2014;2014:131709. https://doi.org/10.1155/2014/131709.
Gouni-Berthold I, Berthold HK, Mantzoros CS, Böhm M, Krone W. Sex disparities in the treatment and control of cardiovascular risk factors in type 2 diabetes. Diabetes Care. 2008;31(7):1389–91. https://doi.org/10.2337/dc08-0194.
Rossi MC, Cristofaro MR, Gentile S, et al. Sex disparities in the quality of diabetes care: biological and cultural factors may play a different role for different outcomes: a cross-sectional observational study from the AMD Annals initiative. Diabetes Care. 2013;36(10):3162–8. https://doi.org/10.2337/dc13-0184.
Yu MK, Lyles CR, Bent-Shaw LA, Young BA. Sex disparities in diabetes process of care measures and self-care in high-risk patients. J Diabetes Res. 2013;2013:575814. https://doi.org/10.1155/2013/575814.
Tseng C-L, Sambamoorthi U, Rajan M, et al. Are there gender differences in diabetes care among elderly Medicare enrolled veterans? J Gen Intern Med. 2006;21(Suppl 3):S47–53. https://doi.org/10.1111/j.1525-1497.2006.00374.x.
Bird CE, Fremont AM, Bierman AS, et al. Does quality of care for cardiovascular disease and diabetes differ by gender for enrollees in managed care plans? Women’s Heal Issues. 2007;17(3):131–8. https://doi.org/10.1016/J.WHI.2007.03.001.
Bird CE, Manocchia M, Tomblin B, et al. Mapping the gaps: gender differences in preventive cardiovascular care among managed care members in four metropolitan areas. Womens Health Issues. 2018;28(5):446–55. https://doi.org/10.1016/j.whi.2018.04.008.
Billimek J, Malik S, Sorkin DH, et al. Understanding disparities in lipid management among patients with type 2 diabetes: gender differences in medication nonadherence after treatment intensification. Womens Health Issues. 2015;25(1):6–12. https://doi.org/10.1016/j.whi.2014.09.004.
Chou AF, Brown AF, Jensen RE, Shih S, Pawlson G, Scholle SH. Gender and racial disparities in the management of diabetes mellitus among Medicare patients. Women’s Heal Issues. 2007;17(3):150–61. https://doi.org/10.1016/j.whi.2007.03.003.
Guthrie B, Emslie-Smith A, Morris AD. Which people with type 2 diabetes achieve good control of intermediate outcomes? Population database study in a UK region. Diabet Med. 2009;26(12):1269–76. https://doi.org/10.1111/j.1464-5491.2009.02837.x.
Strom Williams JL, Lynch CP, Winchester R, Thomas L, Keith B, Egede LE. Gender differences in composite control of cardiovascular risk factors among patients with type 2 diabetes. Diabetes Technol Ther. 2014;16(7):421–7. https://doi.org/10.1089/dia.2013.0329.
McGovern MP, Williams DJ, Hannaford PC, et al. Introduction of a new incentive and target-based contract for family physicians in the UK: good for older patients with diabetes but less good for women? Diabet Med. 2008;25(9):1083–9. https://doi.org/10.1111/j.1464-5491.2008.02544.x.
Williams JS, Bishu KG, St Germain A, Egede LE. Trends in sex differences in the receipt of quality of care indicators among adults with diabetes: United States 2002-2011. BMC Endocr Disord. 2017;17(1):31. https://doi.org/10.1186/s12902-017-0183-5.
de Jong M, Vos RC, de Ritter R, et al. Sex differences in cardiovascular risk management for people with diabetes in primary care: a cross-sectional study. BJGP Open. 2019:bjgpopen19X101645. https://doi.org/10.3399/bjgpopen19X101645.
Sabaté E, World Health Organization. Adherence to long-term therapies : evidence for action. World Health Organization; 2003. http://apps.who.int/medicinedocs/en/d/Js4883e/. Accessed 11 Dec 2018.
Jackevicius CA, Li P, Tu JV. Prevalence, predictors, and outcomes of primary nonadherence after acute myocardial infarction. Circulation. 2008;117(8):1028–36. https://doi.org/10.1161/CIRCULATIONAHA.107.706820.
Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly patients with and without acute coronary syndromes. JAMA. 288(4):462–7 http://www.ncbi.nlm.nih.gov/pubmed/12132976. Accessed 11 June 2018.
Vrijens B, De Geest S, Hughes DA, et al. A new taxonomy for describing and defining adherence to medications. Br J Clin Pharmacol. 2012;73(5):691–705. https://doi.org/10.1111/j.1365-2125.2012.04167.x.
Kolandaivelu K, Leiden BB, O’Gara PT, Bhatt DL. Non-adherence to cardiovascular medications. Eur Heart J. 2014;35(46):3267–76. https://doi.org/10.1093/eurheartj/ehu364.
Ho PM, Rumsfeld JS, Masoudi FA, et al. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med. 2006;166(17):1836. https://doi.org/10.1001/archinte.166.17.1836.
Lewey J, Shrank WH, Bowry ADK, Kilabuk E, Brennan TA, Choudhry NK. Gender and racial disparities in adherence to statin therapy: a meta-analysis. Am Heart J. 2013;165(5):665–78, 678.e1. https://doi.org/10.1016/j.ahj.2013.02.011.
Cramer JA, Benedict A, Muszbek N, Keskinaslan A, Khan ZM. The significance of compliance and persistence in the treatment of diabetes, hypertension and dyslipidaemia: a review. Int J Clin Pract. 2008;62(1):76–87. https://doi.org/10.1111/j.1742-1241.2007.01630.x.
Iglay K, Cartier SE, Rosen VM, et al. Meta-analysis of studies examining medication adherence, persistence, and discontinuation of oral antihyperglycemic agents in type 2 diabetes. Curr Med Res Opin. 2015;31(7):1283–96. https://doi.org/10.1185/03007995.2015.1053048.
Odegard PS, Capoccia K. Medication taking and diabetes: a systematic review of the literature. Diabetes Educ. 2007;33(6):1014–29. https://doi.org/10.1177/0145721707308407.
Wong MCS, Kong APS, So W-Y, Jiang JY, Chan JCN, Griffiths SM. Adherence to oral hypoglycemic agents in 26,782 Chinese patients: a cohort study. J Clin Pharmacol. 2011;51(10):1474–82. https://doi.org/10.1177/0091270010382911.
Curkendall SM, Thomas N, Bell KF, Juneau PL, Weiss AJ. Predictors of medication adherence in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2013;29(10):1275–86. https://doi.org/10.1185/03007995.2013.821056.
Hertz RP, Unger AN, Lustik MB. Adherence with pharmacotherapy for type 2 diabetes: a retrospective cohort study of adults with employer-sponsored health insurance. Clin Ther. 2005;27(7):1064–73. https://doi.org/10.1016/j.clinthera.2005.07.009.
Tiv M, Viel J-F, Mauny F, et al. Medication adherence in type 2 diabetes: the ENTRED Study 2007, a French population-based study. Malaga G, ed. PLoS One. 2012;7(3):e32412. doi:https://doi.org/10.1371/journal.pone.0032412
Donnan PT, MacDonald TM, Morris AD. Adherence to prescribed oral hypoglycaemic medication in a population of patients with type 2 diabetes: a retrospective cohort study. Diabet Med. 2002;19(4):279–84. https://doi.org/10.1046/j.1464-5491.2002.00689.x.
Wong KW, Ho SY, Chao DVK. Quality of diabetes care in public primary care clinics in Hong Kong. Fam Pract. 2012;29(2):196–202. https://doi.org/10.1093/fampra/cmr060.
Barker LC, Kurdyak P, Jacob B, Vigod SN. Quality of diabetes care for individuals with comorbid chronic psychotic illness: a sex-based analysis. J Women’s Heal. 2018;27(3):290–6. https://doi.org/10.1089/jwh.2017.6490.
Baviera M, Santalucia P, Cortesi L, et al. Sex differences in cardiovascular outcomes, pharmacological treatments and indicators of care in patients with newly diagnosed diabetes: analyses on administrative database. Eur J Intern Med. 2014;25(3):270–5. https://doi.org/10.1016/j.ejim.2014.01.022.
Gnavi R, Picariello R, la Karaghiosoff L, Costa G, Giorda C. Determinants of quality in diabetes care process: the population-based Torino Study. Diabetes Care. 2009;32(11):1986–92. https://doi.org/10.2337/dc09-0647.
Correa-de-Araujo R, McDermott K, Moy E. Gender differences across racial and ethnic groups in the quality of care for diabetes. Women’s Heal Issues. 2006;16(2):56–65. https://doi.org/10.1016/J.WHI.2005.08.003.
Nau DP, Mallya U. Sex disparity in the management of dyslipidemia among patients with type 2 diabetes mellitus in a managed care organization. Am J Manag Care. 2005;11(2):69–73 http://www.ncbi.nlm.nih.gov/pubmed/15726854. Accessed 7 May 2019.
Willis TA, West R, Rushforth B, et al. Variations in achievement of evidence-based, high-impact quality indicators in general practice: an observational study. Asnani MR, ed PLoS One. 2017;12(7):e0177949. doi:https://doi.org/10.1371/journal.pone.0177949
Choe S-A, Kim JY, Ro YS, Cho S-I. Women are less likely than men to achieve optimal glycemic control after 1 year of treatment: a multi-level analysis of a Korean primary care cohort. PLoS One. 2018;13(5):e0196719. https://doi.org/10.1371/journal.pone.0196719.