Sex differences in dietary intake in British Army recruits undergoing phase one training

Shaun Chapman1,2, Justin Roberts2, Lee Smith2, Alex Rawcliffe1, Rachel Izard1
1HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, UK
2Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, England

Tóm tắt

British Army Phase One training exposes men and women to challenging distances of 13.5 km·d− 1 vs. 11.8 km·d− 1 and energy expenditures of ~ 4000 kcal·d− 1 and ~ 3000 kcal·d− 1, respectively. As such, it is essential that adequate nutrition is provided to support training demands. However, to date, there is a paucity of data on habitual dietary intake of British Army recruits. The aims of this study were to: (i) compare habitual dietary intake in British Army recruits undergoing Phase One training to Military Dietary Reference Values (MDRVs), and (ii) establish if there was a relative sex difference in dietary intake between men and women. Researcher led weighed food records and food diaries were used to assess dietary intake in twenty-eight women (age 21.4 ± 3.0 yrs., height: 163.7 ± 5.0 cm, body mass 65.0 ± 6.7 kg), and seventeen men (age 20.4 ± 2.3 yrs., height: 178.0 ± 7.9 cm, body mass 74.6 ± 8.1 kg) at the Army Training Centre, Pirbright for 8-days in week ten of training. Macro and micronutrient content were estimated using dietary analysis software (Nutritics, Dublin) and assessed via an independent sample t-test to establish if there was a sex difference in daily energy, macro or micronutrient intakes. Estimated daily energy intake was less than the MDRV for both men and women, with men consuming a greater amount of energy compared with women (2846 ± 573 vs. 2207 ± 585 kcal·day− 1, p < 0.001). Both sexes under consumed carbohydrate (CHO) when data was expressed relative to body mass with men consuming a greater amount than women (4.8 ± 1.3 vs. 3.8 ± 1.4 g·kg− 1·day− 1, p = 0.025, ES = 0.74). Both sexes also failed to meet MDRVs for protein intake with men consuming more than women (1.5 ± 0.3 vs. 1.3 ± 0.3 g·kg− 1·day− 1, p > 0.030, ES = 0.67). There were no differences in dietary fat intake between men and women (1.5 ± 0.2 vs. 1.5 ± 0.5 g·kg− 1·day− 1, p = 0.483, ES = 0.00). Daily EI in men and women in Phase One training does not meet MDRVs. Interventions to increase macronutrient intakes should be considered along with research investigating the potential benefits for increasing different macronutrient intakes on training adaptations.

Tài liệu tham khảo

O’Leary TJ, Saunders SC, McGuire SJ, Venables MC, Izard RM. Sex differences in training loads during British Army basic training. Med Sci Sport Ex. 2018 Dec;50(12):2565–74. Blacker SD, Wilkinson DM, Bilzon JLJ, Rayson MP. Risk factors for training injuries among British Army recruits. Mil Med. 2008 Mar;173(3):278–86. Richmond VL, Carter JM, Wilkinson DM, Horner FE, Rayson MP, Wright A, et al. Comparison of the physical demands of single-sex training for male and female recruits in the British Army. Mil Med. 2012 Jun;177(6):709–15. Achten J, Halson SL, Moseley L, Rayson MP, Casey A, Jeukendrup AE. Higher dietary carbohydrate content during intensified running training results in better maintenance of performance and mood state. J App Phys. 2004 Apr;96(4):1331–40. Close GL, Sale C, Baar K, Bermon S. Nutrition for the prevention and treatment of injuries in track and field athletes. Int J Sport Nut Ex Met. 2019 Jan;24:1–26. Moran DS, Heled Y, Arbel Y, Israeli E, Finestone AS, Evans RK, et al. Dietary intake and stress fractures among elite male combat recruits. J Intern Soc Sport Nut. 2012;9:1–7. Wardle SL, Greeves JP. Mitigating the risk of musculoskeletal injury: a systematic review of the most effective injury prevention strategies for military personnel. J Sci Med Sport. 2017;20:S3–10. Pasiakos SM, Austin KG, Lieberman HR, Askew EW. Efficacy and safety of protein supplements for U.S. armed forces personnel: consensus statement. J Nutr. 2013 Nov 1;143(11):1811S–4S. O’Leary TJ, Saunders SC, McGuire SJ, Izard RM. Sex differences in neuromuscular fatigability in response to load carriage in the field in British Army recruits. J Sci Med Sport. 2018;21(6):591–5. Lutz LJ, Gaffney-Stomberg E, Karl JP, Hughes JM, Guerriere KI, McClung JP. Dietary intake in relation to military dietary reference values during Army basic combat training; a multi-center. Cross-sectional Study Mil Med. 2019;184(3–4):E223–30. Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Intern Soc Sport Nut. 2018 Dec 1;15(1):38. Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Acad Nut Diet. 2016 Mar 1;116(3):501–28. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition Position Stand: protein and exercise. J Intern Soc Sport Nut. 2017;14:20. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Min Res. 2004;19(8):1231–40. Zanker CL, Swaine IL. Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Euro J App Phys. 2000;83(4–5):434–40. Li P, Yin Y, Li D, Kim SW, Wu G. Review article amino acids and immune function. Brit J Nut. 2007;98(2):237–52. Green MW, Rogers PJ, Elliman NA, Gatenby SJ. Impairment of cognitive performance associated with dieting and high levels of dietary restraint. Phys Beh. 1994;55(3):447–52. SACN Statement on Military Dietary Reference Values for Energy. 50. https://www.gov.uk/government/publications/sacn-statement-on-military-dietary-reference-values-for-energy. Accessed 11 Nov 2019. VanHeest JL, Rodgers CD, Mahoney CE, De Souza MJ. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sport Ex. 2014 Jan;46(1):156–66. O’Leary TJ, Gifford RM, Double RL, Reynolds RM, Woods DR, Wardle SL, et al. Skeletal responses to an all-female unassisted Antarctic traverse. Bone. 2019 Apr;121:267–76. McClung HL, Champagne CM, Allen HR, McGraw SM, Young AJ, Montain SJ, et al. Digital food photography technology improves efficiency and feasibility of dietary intake assessments in large populations eating ad libitum in collective dining facilities. App. 2017;116:389–94. Israeli E, Merkel D, Constantini N, Yanovich R, Evans RK, Shahar D, et al. Iron deficiency and the role of nutrition among female military recruits. Med Sci Sport Ex. 2008;40:S685–90. Ramsey CB, Hostetler C, Andrews A. Evaluating the nutrition intake of U.S. military service members in garrison. Mil Med. 2013;178(12):1285–90. Etzion-Daniel Y, Constanini N, Finestone AS, Shahar DR, Israeli E, Yanovich R, et al. Nutrition consumption of female combat recruits in Army basic training. Med Sci Sport Ex. 2008;40:S677–84. Stark AH, Weis N, Chapnik L, Barenboim E, Reifen R. Dietary intake of pilots in the Israeli air force. Mil Med. 2015;173(8):780–4. Beals K, Darnell ME, Lovalekar M, Baker RA, Nagai T, San-Adams T, et al. Suboptimal nutritional characteristics in male and female soldiers compared to sports nutrition guidelines. Mil Med. 2015;180(12):1239–46. McAdam J, McGinnis K, Ory R, Young K, Frugé AD, Roberts M, et al. Estimation of energy balance and training volume during Army initial entry training. J Intern Soc Sport Nut. 2018;15(1):55. Aguilar-Farias N, Peeters GMEE. (Geeske), Brychta RJ, Chen KY, Brown WJ. Comparing ActiGraph equations for estimating energy expenditure in older adults. J Sports Sci. 2019 Jan;37(2):188–95. Magkos F, Yannakoulia M. Methodology of dietary assessment in athletes: concepts and pitfalls. Curr Op Clin Nut Met Care. 2003;6(5):539–49. Ahmed M, Mandic I, Lou W, Goodman L, Jacobs I, L’Abbé MR. Validation of a tablet application for assessing dietary intakes compared with the measured food intake/food waste method in military personnel consuming field rations. Nutrients. 2017 Mar;9(3):200. Braakhuis AJ, Meredith K, Cox GR, Hopkins WG, Burke LM. Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. Intern J Sport Nut Ex Met. 2003 Jun;13(2):152–65. Costa RJS, Jones GE, Lamb KL, Coleman R, Williams JHH. The effects of a high carbohydrate diet on cortisol and salivary immunoglobulin a (s-IgA) during a period of increase exercise workload amongst Olympic and ironman triathletes. Int J Sport Med. 2005 Apr;26(10):880–5. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the female athlete triad-relative energy deficiency in sport (RED-S). Brit J Sport Med. 2014;48(7):491–7. Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Ad Nut. 2012;3(2):119–26. Pasiakos SM, Margolis LM, Orr JS. Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB J: Official Publication Fed Am Soc Exp Biol. 2015;29(4):1136–42. Slater GJ, Dieter BP, Marsh DJ, Helms ER, Shaw G, Iraki J. Is an Energy Surplus Required to Maximize Skeletal Muscle Hypertrophy Associated With Resistance Training. Front Nutr. 2019;6:l31. Margolis LM, Murphy NE, Martini S, Gundersen Y, Castellani JW, Karl JP, et al. Effects of supplemental energy on protein balance during 4-d Arctic military training. Med Sci Sport Ex. 2016 Aug;48(8):1604–12. Carbone JW, Margolis LM, McClung JP, Cao JJ, Murphy NE, Sauter ER, et al. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis. FASEB J. 2013 Dec;27(12):5104–11. Ackerman KE, Sokoloff NC, De Nardo MG, Clarke HM, Lee H, Misra M. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sport Ex. 2015;47(8):1577–86. Papageorgiou M, Elliott-Sale KJ, Parsons A, Tang JCY, Greeves JP, Fraser WD, et al. Effects of reduced energy availability on bone metabolism in women and men. Bone. 2017 Dec;105:191–9. Brinkmans NYJ, Iedema N, Plasqui G, Wouters L, Saris WHM, van Loon LJC, et al. Energy expenditure and dietary intake in professional football players in the Dutch premier league: implications for nutritional counselling. J Sport Sci. 2019 Feb;16:1–9. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sport Sci. 2011 Jan 1;29:S17–27. Gleeson M, Nieman DC, Pedersen BK. Exercise, nutrition and immune function. J Sports Sci. 2004 Jan;22(1):115–25. Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008 Dec;5(1):17. Edwards VC, Myers SD, Siddall AG, Thompson JES, Powell SD, Jackson S, et al. Timing of energy and macronutrient intake of British Army officer cadets during military training. Med Sci Sport Ex. 2018 May;50:639. Kato H, Suzuki K, Bannai M, Moore DR. Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method. Fisher G, editor. PLoS ONE. 2016 Jun 20;11(6). Pasiakos SM, McClung HL, Margolis LM, Murphy NE, Lin GG, Hydren JR, et al. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PLoS One. 2015;10(10). Flakoll PJ, Judy T, Flinn K, Carr C, Flinn S. Postexercise protein supplementation improves health and muscle soreness during basic military training in marine recruits. J App Phys. 2004 Mar;96(3):951–6. Witard OC, Jackman SR, Kies AK, Jeukendrup AE, Tipton KD. Effect of increased dietary protein on tolerance to intensified training. Med Sci Sports Ex. 2011 Apr;43(4):598–607. McAdam J, McGinnis K, Beck D, Haun C, Romero M, Mumford P, et al. Effect of whey protein supplementation on physical performance and body composition in Army initial entry training soldiers. Nutrients. 2018 Sep 6;10(9):1248. Carswell AT, Oliver SJ, Wentz LM, Kashi DS, Roberts R, Tang JCY, et al. Influence of vitamin D supplementation by sunlight or Oral D3 on exercise performance. Med Sci Sports Ex. 2018 Dec;50(12):2555–64. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Min Res. 2008;23(5):741–9. Jackson S, Walsh N, Oliver S, Izard R, Tang J, Fraser W, et al. Changes in iron status of British Army recruits in basic military training. J Sci Med Sport. 2017 Nov 1;20:S164. Pasiakos SM, Margolis LM, Murphy NE, McClung HL, Martini S, Gundersen Y, et al. Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training. Physiol Rep. 2016 Jun;7:4(11).