Sex differences in cancer mechanisms

Springer Science and Business Media LLC - Tập 11 - Trang 1-29 - 2020
Joshua B. Rubin1,2, Joseph S. Lagas1, Lauren Broestl1, Jasmin Sponagel1, Nathan Rockwell1, Gina Rhee1, Sarah F. Rosen3, Si Chen4, Robyn S. Klein2,3, Princess Imoukhuede4, Jingqin Luo5
1Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
2Department of Neuroscience, Washington University School of Medicine, St. Louis, USA
3Department of Medicine, Washington University School of Medicine, St Louis, USA.
4Department of Biomedical Engineering, Washington University School of Medicine, St Louis, USA
5Department of Surgery, Washington University School of Medicine, St. Louis, USA

Tóm tắt

We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.

Tài liệu tham khảo

Cook MB, McGlynn KA, Devesa SS, Freedman ND, Anderson WF. Sex disparities in cancer mortality and survival. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2011;20:1629–37. https://doi.org/10.1158/1055-9965.EPI-11-0246. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30. https://doi.org/10.3322/caac.21387. Conforti F, et al. Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol. 2018;19:737–46. https://doi.org/10.1016/S1470-2045(18)30261-4. Rampen FH. Malignant melanoma: sex differences in response to chemotherapy? Eur J Cancer Clin Oncol. 1982;18:107–10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332. Mervic L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS One. 2012;7:e32955. https://doi.org/10.1371/journal.pone.0032955. Pal SK, Hurria A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J Clin Oncol. 2010;28:4086–93. https://doi.org/10.1200/JCO.2009.27.0579. Rampen F. Malignant melanoma: sex differences in survival after evidence of distant metastasis. Br J Cancer. 1980;42:52–7. https://doi.org/10.1038/bjc.1980.202. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308. https://doi.org/10.1210/er.2002-0032. Weiss JR, Moysich KB, Swede H. Epidemiology of male breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14:20–6. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82. https://doi.org/10.1056/NEJMra050776. Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008;18:3–10. https://doi.org/10.1016/j.gde.2008.01.003. Antoni S, et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol. 2017;71:96–108. https://doi.org/10.1016/j.eururo.2016.06.010. Aron M, Nguyen MM, Stein RJ, Gill IS. Impact of gender in renal cell carcinoma: an analysis of the SEER database. Eur Urol. 2008;54:133–40. https://doi.org/10.1016/j.eururo.2007.12.001. Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol. 2009;472:467–77. https://doi.org/10.1007/978-1-60327-492-0_23. Cartwright RA, Gurney KA, Moorman AV. Sex ratios and the risks of haematological malignancies. Br J Haematol. 2002;118:1071–7. https://doi.org/10.1046/j.1365-2141.2002.03750.x. Chow WH, et al. Risk factors for small intestine cancer. Cancer Causes Control. 1993;4:163–9. Cook MB, Chow WH, Devesa SS. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer. 2009;101:855–9. https://doi.org/10.1038/sj.bjc.6605246. Farahati, J., Bucsky, P., Parlowsky, T., Mader, U. & Reiners, C. Characteristics of differentiated thyroid carcinoma in children and adolescents with respect to age, gender, and histology. Cancer 80, 2156-2162, doi:10.1002/(sici)1097-0142(19971201)80:11 < 2156::aid-cncr16 > 3.0.co;2-y (1997). Jawad MU, et al. Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973-2005. Cancer. 2009;115:3526–36. https://doi.org/10.1002/cncr.24388. Kfoury N, et al. Cooperative p16 and p21 action protects female astrocytes from transformation. Acta Neuropathol Commun. 2018;6:12. https://doi.org/10.1186/s40478-018-0513-5. Kim SE, et al. Sex- and gender-specific disparities in colorectal cancer risk. World J Gastroenterol. 2015;21:5167–75. https://doi.org/10.3748/wjg.v21.i17.5167. Lautrup, M. D. et al. Male breast cancer: a nation-wide population-based comparison with female breast cancer. Acta Oncol 57, 613-621, doi:10.1080/0284186X.2017.1418088 (2018). Li Y, Izumi K, Miyamoto H. The role of the androgen receptor in the development and progression of bladder cancer. Jpn J Clin Oncol. 2012;42:569–77. https://doi.org/10.1093/jjco/hys072. Muscat, JE. & Wynder, EL. Tobacco, alcohol, asbestos, and occupational risk factors for laryngeal cancer. Cancer 69, 2244-2251, doi:10.1002/1097-0142(19920501)69:9 < 2244::aid-cncr2820690906 > 3.0.co;2-o (1992). Muscat JE, Wynder EL. A case/control study of risk factors for major salivary gland cancer. Otolaryngol Head Neck Surg. 1998;118:195–8. https://doi.org/10.1016/S0194-5998(98)80013-2. Naugler WE, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4. https://doi.org/10.1126/science.1140485. Nosrati A, Wei ML. Sex disparities in melanoma outcomes: the role of biology. Arch Biochem Biophys. 2014;563:42–50. https://doi.org/10.1016/j.abb.2014.06.018. Patel JD. Lung cancer in women. J Clin Oncol. 2005;23:3212–8. https://doi.org/10.1200/JCO.2005.11.486. Polednak, AP. & Flannery, JT. Brain, other central nervous system, and eye cancer. Cancer 75, 330-337, doi:10.1002/1097-0142(19950101)75:1 + <330::aid-cncr2820751315 > 3.0.co;2-5 (1995). Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol. 2008;48:380–1. https://doi.org/10.1016/j.jhep.2007.11.007. Rahbari R, Zhang L, Kebebew E. Thyroid cancer gender disparity. Future Oncol. 2010;6:1771–9. https://doi.org/10.2217/fon.10.127. Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: recent update. World J Gastroenterol. 2017;23:3978–98. https://doi.org/10.3748/wjg.v23.i22.3978. Soderlund S, et al. Inflammatory bowel disease confers a lower risk of colorectal cancer to females than to males. Gastroenterology. 2010;138:1697–703. https://doi.org/10.1053/j.gastro.2010.02.007. Sun T, et al. Sexually dimorphic RB inactivation underlies mesenchymal glioblastoma prevalence in males. J Clin Invest. 2014;124:4123–33. https://doi.org/10.1172/JCI71048. Sun T, Warrington NM, Rubin JB. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors. Biol Sex Differ. 2012;3:3. Swango PA. Cancers of the oral cavity and pharynx in the United States: an epidemiologic overview. J Public Health Dent. 1996;56:309–18. Tota JE, et al. Rising incidence of oral tongue cancer among white men and women in the United States, 1973-2012. Oral Oncol. 2017;67:146–52. https://doi.org/10.1016/j.oraloncology.2017.02.019. Tseng HF, Morgenstern H, Mack TM, Peters RK. Risk factors for anal cancer: results of a population-based case--control study. Cancer Causes Control. 2003;14:837–46. Warrington NM, et al. The cyclic AMP pathway is a sex-specific modifier of glioma risk in type I neurofibromatosis patients. Cancer Res. 2015;75:16–21. https://doi.org/10.1158/0008-5472.CAN-14-1891. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–61. https://doi.org/10.1053/j.gastro.2013.01.068. Yan TD, Popa E, Brun EA, Cerruto CA, Sugarbaker PH. Sex difference in diffuse malignant peritoneal mesothelioma. Br J Surg. 2006;93:1536–42. https://doi.org/10.1002/bjs.5377. Curtin, SC., Minino, AM. & Anderson, RN. Declines in cancer death rates among children and adolescents in the United States, 1999-2014. NCHS Data Brief, 1-8 (2016). Centers for Disease Control and Prevention, N. C. f. H. S. WHO Growth Standards Are Recommended for Use in the U.S. for Infants and Children 0 to 2 Years of Age, <https://www.cdc.gov/growthcharts/who_charts.htm> (2010). Perrin JS, et al. Sex differences in the growth of white matter during adolescence. Neuroimage. 2009;45:1055–66. https://doi.org/10.1016/j.neuroimage.2009.01.023. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56:308–21. https://doi.org/10.1007/s12016-017-8648-x. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38. https://doi.org/10.1038/nri.2016.90. Chaudhari S, et al. Mechanisms of sex disparities in cardiovascular function and remodeling. Compr Physiol. 2018;9:375–411. https://doi.org/10.1002/cphy.c180003. Chella Krishnan, K., Mehrabian, M. & Lusis, AJ. Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol 29, 404-410, doi:10.1097/MOL.0000000000000536 (2018). Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–4. https://doi.org/10.1016/j.maturitas.2017.06.026. Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21:v1–v100. https://doi.org/10.1093/neuonc/noz150. Franceschi E, et al. The prognostic roles of gender and O6-methylguanine-DNA methyltransferase methylation status in glioblastoma patients: the female power. World Neurosurg. 2018;112:e342–7. https://doi.org/10.1016/j.wneu.2018.01.045. Gittleman H, et al. Sex is an important prognostic factor for glioblastoma but not for nonglioblastoma. Neurooncol Pract. 2019;6:451–62. https://doi.org/10.1093/nop/npz019. Ostrom QT, et al. Sex-specific gene and pathway modeling of inherited glioma risk. Neuro Oncol. 2019;21:71–82. https://doi.org/10.1093/neuonc/noy135. Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro Oncol. 2018;20:576–7. https://doi.org/10.1093/neuonc/noy002. Schiffgens, S. et al. Sex-specific clinicopathological significance of novel (Frizzled-7) and established (MGMT, IDH1) biomarkers in glioblastoma. Oncotarget 7, 55169-55180, doi:10.18632/oncotarget.10465 (2016). Silvestris DA, et al. Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma. Genome Biol. 2019;20:33. https://doi.org/10.1186/s13059-019-1647-x. Tian, M. et al. Impact of gender on the survival of patients with glioblastoma. Biosci Rep 38, doi:10.1042/BSR20180752 (2018). Yang, W. et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci Transl Med 11, doi:10.1126/scitranslmed.aao5253 (2019). Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77. https://doi.org/10.1016/j.cell.2013.09.034. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27. https://doi.org/10.1016/j.cell.2012.06.013. Feinberg AP, Koldobskiy MA, Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17:284–99. https://doi.org/10.1038/nrg.2016.13. Mack SC, Hubert CG, Miller TE, Taylor MD, Rich JN. An epigenetic gateway to brain tumor cell identity. Nat Neurosci. 2016;19:10–9. https://doi.org/10.1038/nn.4190. Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22:425–37. https://doi.org/10.1016/j.ccr.2012.08.024. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183:1654–5. https://doi.org/10.1038/1831654a0. Flavahan, WA., Gaskell, E. & Bernstein, BE. Epigenetic plasticity and the hallmarks of cancer. Science 357, doi:10.1126/science.aal2380 (2017). Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339:1567–70. https://doi.org/10.1126/science.1230184. Liau, BB. et al. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20, 233-246 e237, doi:10.1016/j.stem.2016.11.003 (2017). Roesch A, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 2013;23:811–25. https://doi.org/10.1016/j.ccr.2013.05.003. Sharma SV, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. https://doi.org/10.1016/j.cell.2010.02.027. Banelli B, et al. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle. 2015;14:3418–29. https://doi.org/10.1080/15384101.2015.1090063. Banelli, B. et al. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells. Oncotarget 8, 34896-34910, doi:10.18632/oncotarget.16820 (2017). Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41. https://doi.org/10.1038/nrg.2016.93. Liu J, Morgan M, Hutchison K, Calhoun VD. A study of the influence of sex on genome wide methylation. PLoS One. 2010;5:e10028. https://doi.org/10.1371/journal.pone.0010028. Maschietto M, et al. Sex differences in DNA methylation of the cord blood are related to sex-bias psychiatric diseases. Sci Rep. 2017;7:44547. https://doi.org/10.1038/srep44547. Singmann P, et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 2015;8:43. https://doi.org/10.1186/s13072-015-0035-3. Yousefi P, et al. Sex differences in DNA methylation assessed by 450 K BeadChip in newborns. BMC Genomics. 2015;16:911. https://doi.org/10.1186/s12864-015-2034-y. Martin E, et al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics. 2017;9:267–78. https://doi.org/10.2217/epi-2016-0132. Garcia-Calzon S, Perfilyev A, de Mello VD, Pihlajamaki J, Ling C. Sex differences in the methylome and transcriptome of the human liver and circulating HDL-cholesterol levels. J Clin Endocrinol Metab. 2018;103:4395–408. https://doi.org/10.1210/jc.2018-00423. Grimm SA, et al. DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun. 2019;10:305. https://doi.org/10.1038/s41467-018-08067-z. McCormick H, et al. Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues. BMC Genomics. 2017;18:966. https://doi.org/10.1186/s12864-017-4350-x. Reizel Y, et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes Dev. 2015;29:923–33. https://doi.org/10.1101/gad.259309.115. Hall E, et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 2014;15:522. https://doi.org/10.1186/s13059-014-0522-z. Davegardh C, et al. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther. 2019;10:26. https://doi.org/10.1186/s13287-018-1118-4. Ghahramani NM, et al. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ. 2014;5:8. https://doi.org/10.1186/2042-6410-5-8. Gross JA, et al. Characterizing 5-hydroxymethylcytosine in human prefrontal cortex at single base resolution. BMC Genomics. 2015;16:672. https://doi.org/10.1186/s12864-015-1875-8. Spiers H, Hannon E, Schalkwyk LC, Bray NJ, Mill J. 5-hydroxymethylcytosine is highly dynamic across human fetal brain development. BMC Genomics. 2017;18:738. https://doi.org/10.1186/s12864-017-4091-x. Spiers H, et al. Methylomic trajectories across human fetal brain development. Genome Res. 2015;25:338–52. https://doi.org/10.1101/gr.180273.114. Xu H, et al. Sex-biased methylome and transcriptome in human prefrontal cortex. Hum Mol Genet. 2014;23:1260–70. https://doi.org/10.1093/hmg/ddt516. Shen EY, et al. Epigenetics and sex differences in the brain: a genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp Neurol. 2015;268:21–9. https://doi.org/10.1016/j.expneurol.2014.08.006. Tsai HW, Grant PA, Rissman EF. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics. 2009;4:47–53. https://doi.org/10.4161/epi.4.1.7288. Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55:570–8. Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82. https://doi.org/10.1210/endo-65-3-369. Bramble MS, Lipson A, Vashist N, Vilain E. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: lessons from cases of disorders of sex development. J Neurosci Res. 2017;95:65–74. https://doi.org/10.1002/jnr.23832. Lee PA, et al. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85:158–80. https://doi.org/10.1159/000442975. Kolodkin MH, Auger AP. Sex difference in the expression of DNA methyltransferase 3a in the rat amygdala during development. J Neuroendocrinol. 2011;23:577–83. https://doi.org/10.1111/j.1365-2826.2011.02147.x. Schwarz JM, Nugent BM, McCarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology. 2010;151:4871–81. https://doi.org/10.1210/en.2010-0142. Nugent BM, et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci. 2015;18:690–7. https://doi.org/10.1038/nn.3988. Mosley M, et al. Neonatal inhibition of DNA methylation alters cell phenotype in sexually dimorphic regions of the mouse brain. Endocrinology. 2017;158:1838–48. https://doi.org/10.1210/en.2017-00205. Bramble MS, et al. Sex-specific effects of testosterone on the sexually dimorphic transcriptome and epigenome of embryonic neural stem/progenitor cells. Sci Rep. 2016;6:36916. https://doi.org/10.1038/srep36916. Turcan S, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83. https://doi.org/10.1038/nature10866. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239–59. https://doi.org/10.2217/epi.09.33. Madakashira BP, Sadler KC. DNA methylation, nuclear organization, and cancer. Front Genet. 2017;8:76. https://doi.org/10.3389/fgene.2017.00076. Mikkelsen TS, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454:49–55. https://doi.org/10.1038/nature07056. Matsuda KI, et al. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology. 2011;152:2760–7. https://doi.org/10.1210/en.2011-0193. Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology. 2009;150:4241–7. https://doi.org/10.1210/en.2009-0458. Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci U S A. 2010;107:3394–9. https://doi.org/10.1073/pnas.0913843107. Kobayashi S, et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol. 2006;16:166–72. https://doi.org/10.1016/j.cub.2005.11.071. Lowe R, Gemma C, Rakyan VK, Holland ML. Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics. 2015;16:295. https://doi.org/10.1186/s12864-015-1506-4. Werner RJ, et al. Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ. 2017;8:28. https://doi.org/10.1186/s13293-017-0150-x. Zylicz, JJ. et al. The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182-197 e123, doi:10.1016/j.cell.2018.11.041 (2019). Pasque V, et al. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell. 2014;159:1681–97. https://doi.org/10.1016/j.cell.2014.11.040. Cantone, I. & Fisher, AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 372, doi:10.1098/rstb.2016.0358 (2017). Dandulakis MG, Meganathan K, Kroll KL, Bonni A, Constantino JN. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research. J Neurodev Disord. 2016;8:22. https://doi.org/10.1186/s11689-016-9155-8. Di KQ, et al. Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod. 2015;92:123. https://doi.org/10.1095/biolreprod.114.124958. Chaligne R, Heard E. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588:2514–22. https://doi.org/10.1016/j.febslet.2014.06.023. Pageau GJ, Hall LL, Ganesan S, Livingston DM, Lawrence JB. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer. 2007;7:628–33. https://doi.org/10.1038/nrc2172. Yang Z, Jiang X, Jiang X, Zhao H. X-inactive-specific transcript: a long noncoding RNA with complex roles in human cancers. Gene. 2018;679:28–35. https://doi.org/10.1016/j.gene.2018.08.071. Liu, JL., Zhang, WQ., Zhao, M. & Huang, M.Y. Upregulation of long noncoding RNA XIST is associated with poor prognosis in human cancers. J Cell Physiol 234, 6594-6600, doi:https://doi.org/10.1002/jcp.27400 (2019). Zhu J, Kong F, Xing L, Jin Z, Li Z. Prognostic and clinicopathological value of long noncoding RNA XIST in cancer. Clin Chim Acta. 2018;479:43–7. https://doi.org/10.1016/j.cca.2018.01.005. Liu F, et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. Oncogene. 2016;35:5422–34. https://doi.org/10.1038/onc.2016.80. Jin M, et al. Long noncoding RNA JPX correlates with poor prognosis and tumor progression in non-small cell lung cancer by interacting with miR-145-5p and CCND2. Carcinogenesis. 2019. https://doi.org/10.1093/carcin/bgz125. Yang F, et al. Identifying potential metastasis-related long non-coding RNAs, microRNAs, and message RNAs in the esophageal squamous cell carcinoma. J Cell Biochem. 2019;120:13202–15. https://doi.org/10.1002/jcb.28594. Jiang S, et al. An expanded landscape of human long noncoding RNA. Nucleic Acids Res. 2019;47:7842–56. https://doi.org/10.1093/nar/gkz621. Liu S, et al. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res. 2017;27:1608–20. https://doi.org/10.1101/gr.217463.116. Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72. https://doi.org/10.1073/pnas.0904715106. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77:3965–81. https://doi.org/10.1158/0008-5472.CAN-16-2634. Chiu, HS. et al. Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23, 297-312 e212, doi:10.1016/j.celrep.2018.03.064 (2018). Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res. 2018;3:108–17. https://doi.org/10.1016/j.ncrna.2018.03.001. Chi, Y., Wang, D., Wang, J., Yu, W. & Yang, J. Long non-coding RNA in the pathogenesis of cancers. Cells 8, doi:10.3390/cells8091015 (2019). Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell. 2019;179:1033–55. https://doi.org/10.1016/j.cell.2019.10.017. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152:1308–23. https://doi.org/10.1016/j.cell.2013.02.016. Gregg C, Zhang J, Butler JE, Haig D, Dulac C. Sex-specific parent-of-origin allelic expression in the mouse brain. Science. 2010;329:682–5. https://doi.org/10.1126/science.1190831. Lepage JF, et al. Genomic imprinting effects of the X chromosome on brain morphology. J Neurosci. 2013;33:8567–74. https://doi.org/10.1523/JNEUROSCI.5810-12.2013. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4. https://doi.org/10.1038/nature03479. Yang F, Babak T, Shendure J, Disteche CM. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 2010;20:614–22. https://doi.org/10.1101/gr.103200.109. Wijchers PJ, et al. Sexual dimorphism in mammalian autosomal gene regulation is determined not only by Sry but by sex chromosome complement as well. Dev Cell. 2010;19:477–84. https://doi.org/10.1016/j.devcel.2010.08.005. Wijchers PJ, Festenstein RJ. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 2011;27:132–40. https://doi.org/10.1016/j.tig.2011.01.004. Lan F, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94. https://doi.org/10.1038/nature06192. Snell DM, Turner JM. A. Sex chromosome effects on male-female differences in mammals. Curr Biol. 2018;28:R1313–24. https://doi.org/10.1016/j.cub.2018.09.018. Xu J, Deng X, Watkins R, Disteche CM. Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci. 2008;28:4521–7. https://doi.org/10.1523/JNEUROSCI.5382-07.2008. Dunford A, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49:10–6. https://doi.org/10.1038/ng.3726. Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci Adv 4, eaar5598, doi:10.1126/sciadv.aar5598 (2018). Li X, et al. UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat Commun. 2018;9:2720. https://doi.org/10.1038/s41467-018-05084-w. Van der Meulen J, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21. https://doi.org/10.1182/blood-2014-05-577270. Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512-526 e518, doi:10.1016/j.ccell.2018.02.003 (2018). Reinius B, et al. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics. 2010;11:614. https://doi.org/10.1186/1471-2164-11-614. Care A, et al. Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ. 2018;25:477–85. https://doi.org/10.1038/s41418-017-0051-x. Ramassone, A., Pagotto, S., Veronese, A. & Visone, R. Epigenetics and microRNAs in cancer. Int J Mol Sci 19, doi:10.3390/ijms19020459 (2018). Wu, KL., Tsai, YM., Lien, CT., Kuo, PL. & Hung, AJ. The roles of microRNA in lung cancer. Int J Mol Sci 20, doi:10.3390/ijms20071611 (2019). Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol. 2017;19:1298–306. https://doi.org/10.1038/ncb3629. Kaelin, WG., Jr. & McKnight, SL. Influence of metabolism on epigenetics and disease. Cell 153, 56-69, doi:https://doi.org/10.1016/j.cell.2013.03.004 (2013). Shimazu T, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339:211–4. https://doi.org/10.1126/science.1227166. Xu W, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014. Laskowski AI, Fanslow DA, Smith ED, Kosak ST. Clinical epigenetic therapies disrupt sex chromosome dosage compensation in human female cells. Gend Genome. 2018;2:2–7. https://doi.org/10.1177/2470289718787106. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014. Strickland M, Stoll EA. Metabolic reprogramming in glioma. Front Cell Dev Biol. 2017;5:43. https://doi.org/10.3389/fcell.2017.00043. Ray PF, Conaghan J, Winston RM, Handyside AH. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J Reprod Fertil. 1995;104:165–71. https://doi.org/10.1530/jrf.0.1040165. Tagirov M, Rutkowska J. Sexual dimorphism in the early embryogenesis in zebra finches. PLoS One. 2014;9:e114625. https://doi.org/10.1371/journal.pone.0114625. Tsunoda Y, Tokunaga T, Sugie T. Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos. Mol Rep Dev. 1985;12:301–4. Valdivia RP, Kunieda T, Azuma S, Toyoda Y. PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Mol Reprod Dev. 1993;35:121–6. https://doi.org/10.1002/mrd.1080350204. Alfarawati S, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4. https://doi.org/10.1016/j.fertnstert.2010.04.003. Menezo YJ, Chouteau J, Torello J, Girard A, Veiga A. Birth weight and sex ratio after transfer at the blastocyst stage in humans. Fertil Steril. 1999;72:221–4. https://doi.org/10.1016/s0015-0282(99)00256-3. Geng X, et al. Fetal sex influences maternal fasting plasma glucose levels and basal beta-cell function in pregnant women with normal glucose tolerance. Acta Diabetol. 2017;54:1131–8. https://doi.org/10.1007/s00592-017-1055-1. Giannubilo SR, Pasculli A, Ballatori C, Biagini A, Ciavattini A. Fetal sex, need for insulin, and perinatal outcomes in gestational diabetes mellitus: an observational cohort study. Clin Ther. 2018;40:587–92. https://doi.org/10.1016/j.clinthera.2018.02.015. Gutierrez-Adan A, et al. Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology. 2001;55:1117–26. Larson MA, Kimura K, Kubisch HM, Roberts RM. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau. Proc Natl Acad Sci U S A. 2001;98:9677–82. https://doi.org/10.1073/pnas.171305398. Peippo J, Kurkilahti M, Bredbacka P. Developmental kinetics of in vitro produced bovine embryos: the effect of sex, glucose and exposure to time-lapse environment. Zygote. 2001;9:105–13. Tiffin GJ, Rieger D, Betteridge KJ, Yadav BR, King WA. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J Reprod Fertil. 1991;93:125–32. https://doi.org/10.1530/jrf.0.0930125. Garcia-Herreros M, Aparicio IM, Rath D, Fair T, Lonergan P. Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reprod Fertil Dev. 2012;24:344–52. https://doi.org/10.1071/RD11080. Kimura K, Iwata H, Thompson JG. The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim Reprod Sci. 2008;103:228–38. https://doi.org/10.1016/j.anireprosci.2006.12.014. Williams TJ. A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose 6-phosphate dehydrogenase. Theriogenology. 1986;25:733–9. Krumsiek J, et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics. 2015;11:1815–33. https://doi.org/10.1007/s11306-015-0829-0. Christmann V, et al. The enigma to achieve normal postnatal growth in preterm infants--using parenteral or enteral nutrition? Acta Paediatr. 2013;102:471–9. https://doi.org/10.1111/apa.12188. van den Akker, CH., te Braake, FW., Weisglas-Kuperus, N. & van Goudoever, JB. Observational outcome results following a randomized controlled trial of early amino acid administration in preterm infants. J Pediatr Gastroenterol Nutr 59, 714-719, doi:10.1097/MPG.0000000000000549 (2014). Mittelstrass K, et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011;7:e1002215. https://doi.org/10.1371/journal.pgen.1002215. Lamont, LS., McCullough, AJ. & Kalhan, SC. Gender differences in the regulation of amino acid metabolism. J Appl Physiol (1985) 95, 1259-1265, doi:10.1152/japplphysiol.01028.2002 (2003). Al-Suwailem E, Abdi S, El-Ansary A. Sex differences in the glutamate signaling pathway in juvenile rats. J Neurosci Res. 2018;96:459–66. https://doi.org/10.1002/jnr.24144. Levin E, McCue MD, Davidowitz G. Sex differences in the utilization of essential and non-essential amino acids in Lepidoptera. J Exp Biol. 2017;220:2743–7. https://doi.org/10.1242/jeb.154757. Hedrington MS, Davis SN. Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front Endocrinol (Lausanne). 2015;6:61. https://doi.org/10.3389/fendo.2015.00061. Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55. https://doi.org/10.1016/j.molmet.2018.05.008. Kochhar S, et al. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Anal Biochem. 2006;352:274–81. https://doi.org/10.1016/j.ab.2006.02.033. Frias JP, et al. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50:1344–50. https://doi.org/10.2337/diabetes.50.6.1344. Ribas, V. et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med 8, 334ra354, doi:10.1126/scitranslmed.aad3815 (2016). Ockner RK, Burnett DA, Lysenko N, Manning JA. Sex differences in long chain fatty acid utilization and fatty acid binding protein concentration in rat liver. J Clin Invest. 1979;64:172–81. https://doi.org/10.1172/JCI109437. Hevener A, Reichart D, Janez A, Olefsky J. Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes. 2002;51:1907–12. https://doi.org/10.2337/diabetes.51.6.1907. Fried SK, Kral JG. Sex differences in regional distribution of fat cell size and lipoprotein lipase activity in morbidly obese patients. Int J Obes. 1987;11:129–40. Ippolito, JE., Yim, AK., Luo, J., Chinnaiyan, P. & Rubin, JB. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. JCI Insight 2, doi:10.1172/jci.insight.92142 (2017). Nguyen GK, Mellnick VM, Yim AK, Salter A, Ippolito JE. Synergy of sex differences in visceral fat measured with CT and tumor metabolism helps predict overall survival in patients with renal cell carcinoma. Radiology. 2018;287:884–92. https://doi.org/10.1148/radiol.2018171504. Anderson NM, Mucka P, Kern JG, Feng H. The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell. 2018;9:216–37. https://doi.org/10.1007/s13238-017-0451-1. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80. https://doi.org/10.1038/cr.2017.155. Munro D, Treberg JR. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol. 2017;220:1170–80. https://doi.org/10.1242/jeb.132142. Ventura-Clapier R, et al. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017;131:803–22. https://doi.org/10.1042/CS20160485. Guevara R, et al. Sex-dependent differences in aged rat brain mitochondrial function and oxidative stress. Free Radic Biol Med. 2009;46:169–75. https://doi.org/10.1016/j.freeradbiomed.2008.09.035. Guevara R, Gianotti M, Roca P, Oliver J. Age and sex-related changes in rat brain mitochondrial function. Cell Physiol Biochem. 2011;27:201–6. https://doi.org/10.1159/000327945. Gaignard P, et al. Effect of sex differences on brain mitochondrial function and its suppression by ovariectomy and in aged mice. Endocrinology. 2015;156:2893–904. https://doi.org/10.1210/en.2014-1913. Khalifa, AR. et al. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep 5, doi:10.14814/phy2.13125 (2017). Escames G, et al. Early gender differences in the redox status of the brain mitochondria with age: effects of melatonin therapy. Horm Mol Biol Clin Investig. 2013;16:91–100. https://doi.org/10.1515/hmbci-2013-0026. Kim HJ, Magrane J, Starkov AA, Manfredi G. The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. Brain. 2012;135:2865–74. https://doi.org/10.1093/brain/aws208. Jaber SM, et al. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int. 2018;117:82–90. https://doi.org/10.1016/j.neuint.2017.09.003. Harish G, et al. Mitochondrial function in human brains is affected by pre- and post mortem factors. Neuropathol Appl Neurobiol. 2013;39:298–315. https://doi.org/10.1111/j.1365-2990.2012.01285.x. Zawada, I. et al. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging (Albany NY) 7, 195-204, doi:10.18632/aging.100733 (2015). Borras C, et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med. 2003;34:546–52. Ide T, et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol. 2002;22:438–42. Reczek RR, XChandel N. The two faces of reactive oxygen species in cancer. Annual Review of Cancer Biology. 2017;1:79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64. https://doi.org/10.1016/j.freeradbiomed.2017.01.004. Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci. 2015;36:124–35. https://doi.org/10.1016/j.tips.2014.11.004. Yang J, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26. https://doi.org/10.1186/s12943-019-0954-x. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018;18:744–57. https://doi.org/10.1038/s41568-018-0074-8. Rideout EJ, Narsaiya MS, Grewal SS. The sex determination gene transformer regulates male-female differences in drosophila body size. PLoS Genet. 2015;11:e1005683. https://doi.org/10.1371/journal.pgen.1005683. Gurgen, D. et al. Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertension 61, 730-736, doi:10.1161/HYPERTENSIONAHA.111.00276 (2013). Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today. 2017;22:796–804. https://doi.org/10.1016/j.drudis.2016.12.003. Poff A, et al. Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol. 2019;56:135–48. https://doi.org/10.1016/j.semcancer.2017.12.011. Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res. 2018;202:35–51. https://doi.org/10.1016/j.trsl.2018.07.013. Stacpoole, PW. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) Axis in Cancer. J Natl Cancer Inst 109, doi:10.1093/jnci/djx071 (2017). Losman, JA. & Kaelin, WG., Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27, 836-852, doi:https://doi.org/10.1101/gad.217406.113 (2013). L, MG., Boulay, K., Topisirovic, I., Huot, ME. & Mallette, FA. Oncogenic activities of IDH1/2 mutations: from epigenetics to cellular signaling. Trends Cell Biol 27, 738-752, doi:10.1016/j.tcb.2017.06.002 (2017). Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608. https://doi.org/10.1093/annonc/mdw013. Whitmire, P. et al. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. bioRxiv, 325464, doi:10.1101/325464 (2018). Chan WM, Siu WY, Lau A, Poon RY. How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol. 2004;24:3536–51. https://doi.org/10.1128/mcb.24.8.3536-3551.2004. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008. https://doi.org/10.1101/cshperspect.a001008. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6. https://doi.org/10.1038/358015a0. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78. https://doi.org/10.1016/j.cell.2017.08.028. Bossi G, et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 2006;25:304–9. https://doi.org/10.1038/sj.onc.1209026. Napoletano F, et al. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis. PLoS Genet. 2017;13:e1007024. https://doi.org/10.1371/journal.pgen.1007024. Hu W. The role of p53 gene family in reproduction. Cold Spring Harb Perspect Biol. 2009;1:a001073. https://doi.org/10.1101/cshperspect.a001073. Chen X, et al. Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Dev Neurobiol. 2008;68:265–73. https://doi.org/10.1002/dneu.20581. Delbridge, ARD. et al. Loss of p53 causes stochastic aberrant X-chromosome inactivation and female-specific neural tube defects. Cell Rep 27, 442-454 e445, doi:10.1016/j.celrep.2019.03.048 (2019). Yi L, Lu C, Hu W, Sun Y, Levine AJ. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 2012;72:5635–45. https://doi.org/10.1158/0008-5472.CAN-12-1451. Waskar, M. et al. Drosophila melanogaster p53 has developmental stage-specific and sex-specific effects on adult life span indicative of sexual antagonistic pleiotropy. Aging (Albany NY) 1, 903-936, doi:10.18632/aging.100099 (2009). Lee JH, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560:243–7. https://doi.org/10.1038/s41586-018-0389-3. Liu C, et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146:209–21. https://doi.org/10.1016/j.cell.2011.06.014. Kim JY, Casaccia-Bonnefil P. Interplay of hormones and p53 in modulating gender dimorphism of subventricular zone cell number. J Neurosci Res. 2009;87:3297–305. https://doi.org/10.1002/jnr.21940. Li FP, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48:5358–62. Malkin D, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. https://doi.org/10.1126/science.1978757. Hwang SJ, Lozano G, Amos CI, Strong LC. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72:975–83. https://doi.org/10.1086/374567. Chompret A, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82:1932–7. https://doi.org/10.1054/bjoc.2000.1167. Wu, C C., Shete, S., Amos, CI. & Strong, LC. Joint effects of germ-line p53 mutation and sex on cancer risk in Li-Fraumeni syndrome. Cancer Res 66, 8287-8292, doi:10.1158/0008-5472.CAN-05-4247 (2006). Gonzalez KD, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27:1250–6. https://doi.org/10.1200/JCO.2008.16.6959. Olivier M, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63:6643–50. Ribeiro RC, Pinto EM, Zambetti GP, Rodriguez-Galindo C. The International Pediatric Adrenocortical Tumor Registry initiative: contributions to clinical, biological, and treatment advances in pediatric adrenocortical tumors. Mol Cell Endocrinol. 2012;351:37–43. https://doi.org/10.1016/j.mce.2011.10.015. Kebebew E, Reiff E, Duh QY, Clark OH, McMillan A. Extent of disease at presentation and outcome for adrenocortical carcinoma: have we made progress? World J Surg. 2006;30:872–8. https://doi.org/10.1007/s00268-005-0329-x. Zhang, Y. et al. The p53 pathway in glioblastoma. Cancers (Basel) 10, doi:10.3390/cancers10090297 (2018). Bond GL, Hu W, Levine AJ. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets. 2005;5:3–8. https://doi.org/10.2174/1568009053332627. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9. https://doi.org/10.1038/387296a0. Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci. 2012;8:672–84. https://doi.org/10.7150/ijbs.4283. Oliner, JD., Saiki, AY. & Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med 6, doi:10.1101/cshperspect.a026336 (2016). Bond GL, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004;119:591–602. https://doi.org/10.1016/j.cell.2004.11.022. Bond GL, et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 2006;66:5104–10. https://doi.org/10.1158/0008-5472.CAN-06-0180. Haupt S, et al. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun. 2019;10:5385. https://doi.org/10.1038/s41467-019-13266-3. Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18:89–102. https://doi.org/10.1038/nrc.2017.109. Golubovskaya VM, Cance WG. Targeting the p53 pathway. Surg Oncol Clin N Am. 2013;22:747–64. https://doi.org/10.1016/j.soc.2013.06.003. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53. https://doi.org/10.1016/j.tcb.2018.02.001. Rao SG, Jackson JG. SASP: tumor suppressor or promoter? Yes! Trends Cancer. 2016;2:676–87. https://doi.org/10.1016/j.trecan.2016.10.001. Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144. Acosta JC, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90. https://doi.org/10.1038/ncb2784. Kansara M, et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J Clin Invest. 2013;123:5351–60. https://doi.org/10.1172/JCI70559. Krzymowski T, Stefanczyk-Krzymowska S. Advances in understanding the physiological mechanism of maternal immune tolerance to the embryo. Reprod Biol. 2012;12:265–70. https://doi.org/10.1016/j.repbio.2012.10.004. Ruhland MK, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762. https://doi.org/10.1038/ncomms11762. Sagiv A, Krizhanovsky V. Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology. 2013;14:617–28. https://doi.org/10.1007/s10522-013-9473-0. Krizhanovsky V, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657–67. https://doi.org/10.1016/j.cell.2008.06.049. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68. https://doi.org/10.1371/journal.pbio.0060301. Kang TW, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51. https://doi.org/10.1038/nature10599. Toso A, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9:75–89. https://doi.org/10.1016/j.celrep.2014.08.044. Austad SN, Fischer KE. Sex Differences in Lifespan. Cell Metab. 2016;23:1022–33. https://doi.org/10.1016/j.cmet.2016.05.019. Marais GAB, et al. Sex gap in aging and longevity: can sex chromosomes play a role? Biol Sex Differ. 2018;9:33. https://doi.org/10.1186/s13293-018-0181-y. Ostan R, et al. Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond). 2016;130:1711–25. https://doi.org/10.1042/CS20160004. Baker DJ, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6. https://doi.org/10.1038/nature10600. Baker DJ, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016;530:184–9. https://doi.org/10.1038/nature16932. Bussian TJ, et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018;562:578–82. https://doi.org/10.1038/s41586-018-0543-y. Musi N, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17:e12840. https://doi.org/10.1111/acel.12840. Childs BG, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354:472–7. https://doi.org/10.1126/science.aaf6659. Jeon OH, David N, Campisi J, Elisseeff JH. Senescent cells and osteoarthritis: a painful connection. J Clin Invest. 2018;128:1229–37. https://doi.org/10.1172/JCI95147. Storer M, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–30. https://doi.org/10.1016/j.cell.2013.10.041. Howlader, N. et al. (National Cancer Institute, 2013). Bitto A, et al. Stress-induced senescence in human and rodent astrocytes. Exp Cell Res. 2010;316:2961–8. https://doi.org/10.1016/j.yexcr.2010.06.021. Chinta SJ, et al. Cellular senescence and the aging brain. Exp Gerontol. 2015;68:3–7. https://doi.org/10.1016/j.exger.2014.09.018. Kritsilis, M. et al. Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci 19, doi:10.3390/ijms19102937 (2018). Kujuro Y, Suzuki N, Kondo T. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proc Natl Acad Sci U S A. 2010;107:8259–64. https://doi.org/10.1073/pnas.0911446107. Fischer KE, Riddle NC. Sex differences in aging: genomic instability. J Gerontol A Biol Sci Med Sci. 2018;73:166–74. https://doi.org/10.1093/gerona/glx105. Gallagher CJ, Balliet RM, Sun D, Chen G, Lazarus P. Sex differences in UDP-glucuronosyltransferase 2B17 expression and activity. Drug Metab Dispos. 2010;38:2204–9. https://doi.org/10.1124/dmd.110.035345. Scandlyn MJ, Stuart EC, Rosengren RJ. Sex-specific differences in CYP450 isoforms in humans. Expert Opin Drug Metab Toxicol. 2008;4:413–24. Kollarovic, G. et al. To senesce or not to senesce: how primary human fibroblasts decide their cell fate after DNA damage. Aging (Albany NY) 8, 158-177, doi:10.18632/aging.100883 (2016). Malorni W, et al. Redox state and gender differences in vascular smooth muscle cells. FEBS Lett. 2008;582:635–42. https://doi.org/10.1016/j.febslet.2008.01.034. Krauthacker B. Levels of organochlorine pesticides and polychlorinated biphenyls (PCBs) in human milk and serum collected from lactating mothers in the northern Adriatic area of Yugoslavia. Bull Environ Contam Toxicol. 1991;46:797–802. https://doi.org/10.1007/bf01689721. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31. https://doi.org/10.1016/s0092-8674(00)81871-1. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell, e13094, doi:10.1111/acel.13094 (2020). Demaria M, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76. https://doi.org/10.1158/2159-8290.CD-16-0241. Velarde MC, Demaria M, Campisi J. Senescent cells and their secretory phenotype as targets for cancer therapy. Interdiscip Top Gerontol. 2013;38:17–27. https://doi.org/10.1159/000343572. Short S, Fielder E, Miwa S, von Zglinicki T. Senolytics and senostatics as adjuvant tumour therapy. EBioMedicine. 2019;41:683–92. https://doi.org/10.1016/j.ebiom.2019.01.056. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6:353–67. https://doi.org/10.1158/2159-8290.CD-15-0894. Paez-Ribes, M., Gonzalez-Gualda, E., Doherty, GJ. & Munoz-Espin, D. Targeting senescent cells in translational medicine. EMBO Mol Med 11, e10234, doi:10.15252/emmm.201810234 (2019). Vinay, DS. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35 Suppl, S185-S198, doi:10.1016/j.semcancer.2015.03.004 (2015). Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013. Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13:e32–42. https://doi.org/10.1016/S1470-2045(11)70155-3. Restifo NP, et al. Identification of human cancers deficient in antigen processing. J Exp Med. 1993;177:265–72. https://doi.org/10.1084/jem.177.2.265. Sotomayor EM, et al. Role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. II. Down-regulation of macrophage-mediated cytotoxicity by tumor-derived granulocyte-macrophage colony-stimulating factor. J Immunol. 1991;147:2816–23. Foell J, Hewes B, Mittler RS. T cell costimulatory and inhibitory receptors as therapeutic targets for inducing anti-tumor immunity. Curr Cancer Drug Targets. 2007;7:55–70. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24:207–12. https://doi.org/10.1016/j.coi.2011.12.009. Cook MB, et al. Sex disparities in cancer incidence by period and age. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2009;18:1174–82. https://doi.org/10.1158/1055-9965.EPI-08-1118. Weinstein Y, Ran S, Segal S. Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol. 1984;132:656–61. Wang L, et al. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3 + CD4+ regulatory T cells. Proc Natl Acad Sci U S A. 2008;105:9331–6. https://doi.org/10.1073/pnas.0710441105. Lin PY, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747–53. https://doi.org/10.4049/jimmunol.1000496. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood. 2011;118:5918–27. https://doi.org/10.1182/blood-2011-03-340281. Laffont S, Blanquart E, Guery JC. Sex differences in asthma: a key role of androgen-signaling in group 2 innate lymphoid cells. Front Immunol. 2017;8:1069. https://doi.org/10.3389/fimmu.2017.01069. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16. https://doi.org/10.1053/j.gastro.2004.09.011. Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37:11553–72. https://doi.org/10.1007/s13277-016-5098-7. Caetano MS, et al. Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat Commun. 2018;9:4589. https://doi.org/10.1038/s41467-018-07042-y. Dogan S, et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res. 2012;18:6169–77. https://doi.org/10.1158/1078-0432.CCR-11-3265. Araujo, JM. et al. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer. Oncotarget 7, 20282-20292, doi:10.18632/oncotarget.7943 (2016). Hewagama A, Patel D, Yarlagadda S, Strickland FM, Richardson BC. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun. 2009;10:509–16. https://doi.org/10.1038/gene.2009.12. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol. 2008;8:737–44. https://doi.org/10.1038/nri2394. Zhang MA, et al. Peroxisome proliferator-activated receptor (PPAR)alpha and -gamma regulate IFNgamma and IL-17A production by human T cells in a sex-specific way. Proc Natl Acad Sci U S A. 2012;109:9505–10. https://doi.org/10.1073/pnas.1118458109. Asadzadeh Z, et al. The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 2017;322:15–25. https://doi.org/10.1016/j.cellimm.2017.10.015. Antohe M, et al. Tumor infiltrating lymphocytes: the regulator of melanoma evolution. Oncol Lett. 2019;17:4155–61. https://doi.org/10.3892/ol.2019.9940. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294:63–9. https://doi.org/10.1016/j.cellimm.2015.01.018. Laffont S, Seillet C, Guery JC. Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol. 2017;8:108. https://doi.org/10.3389/fimmu.2017.00108. Abdullah M, et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012;272:214–9. https://doi.org/10.1016/j.cellimm.2011.10.009. Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L. Sexual dimorphism of immune responses: a new perspective in cancer immunotherapy. Front Immunol. 2018;9:552. https://doi.org/10.3389/fimmu.2018.00552. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47:765–79. https://doi.org/10.1002/eji.201646875. Pinto JA, et al. Gender and outcomes in non-small cell lung cancer: an old prognostic variable comes back for targeted therapy and immunotherapy? ESMO Open. 2018;3:e000344. https://doi.org/10.1136/esmoopen-2018-000344. Wang S, Zhang J, He Z, Wu K, Liu XS. The predictive power of tumor mutational burden in lung cancer immunotherapy response is influenced by patients' sex. Int J Cancer. 2019;145:2840–9. https://doi.org/10.1002/ijc.32327. Duma N, et al. Sex Differences in tolerability to anti-programmed cell death protein 1 therapy in patients with metastatic melanoma and non-small cell lung cancer: are we all equal? Oncologist. 2019;24:e1148–55. https://doi.org/10.1634/theoncologist.2019-0094. Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int Immunol. 2007;19:337–43. https://doi.org/10.1093/intimm/dxl151. Grenda A, Krawczyk P. New dancing couple: PD-L1 and microRNA. Scand J Immunol. 2017;86:130–4. https://doi.org/10.1111/sji.12577. Smolle MA, Calin HN, Pichler M, Calin GA. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J. 2017;284:1952–66. https://doi.org/10.1111/febs.14030. Pinheiro I. Dejager, L. & Libert, CX-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays. 2011;33:791–802. https://doi.org/10.1002/bies.201100047. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. https://doi.org/10.1016/s0092-8674(00)81683-9. Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112:203–14. https://doi.org/10.1016/j.acthis.2009.04.004. Brogi E, et al. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. The Journal of clinical investigation. 1996;97:469–76. https://doi.org/10.1172/JCI118437. Fernando NT, et al. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14:1529–39. https://doi.org/10.1158/1078-0432.CCR-07-4126. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7:359–71. https://doi.org/10.1038/nrm1911. Biel NM, Siemann DW. Targeting the Angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Letters. 2016;380:525–33. https://doi.org/10.1016/j.canlet.2014.09.035. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. Journal of internal medicine. 2013;273:114–27. https://doi.org/10.1111/joim.12019. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews. 2004;25:581–611. https://doi.org/10.1210/er.2003-0027. Imoukhuede PI, Popel AS. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp Cell Res. 2011;317:955–65. https://doi.org/10.1016/j.yexcr.2010.12.014. Avraamides, CJ., Garmy-Susini, B. & Varner, JA. in Nature Reviews Cancer (2008). Kuczynski EA, Patten SG, Coomber BL. VEGFR2 expression and TGF-beta signaling in initial and recurrent high-grade human glioma. Oncology. 2011;81:126–34. https://doi.org/10.1159/000332849. Garmy-Susini B, Varner JA. Circulating endothelial progenitor cells. British Journal of Cancer. 2005;93:855–8. https://doi.org/10.1038/sj.bjc.6602808. Kroll J, Waltenberger J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun. 1998;252:743–6. https://doi.org/10.1006/bbrc.1998.9719. Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200:448–64. https://doi.org/10.1002/path.1400. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64. https://doi.org/10.1016/s0092-8674(00)80108-7. Folkman J, D'Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87:1153–5. https://doi.org/10.1016/s0092-8674(00)81810-3. Du L, et al. Starving neurons show sex difference in autophagy. J Biol Chem. 2009;284:2383–96. https://doi.org/10.1074/jbc.M804396200. De Francesco EM, et al. HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Research. 2013;15:R64. https://doi.org/10.1186/bcr3458. Lin EY, Pollard JW. in. Cancer Research. 2007;67:5064–6. Schoppmann SF, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161:947–56. https://doi.org/10.1016/S0002-9440(10)64255-1. Morikawa S, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160:985–1000. https://doi.org/10.1016/S0002-9440(10)64920-6. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57. https://doi.org/10.1038/35025220. Dubois C, et al. Lymph/angiogenesis contribute to sex differences in lung cancer through ERalpha signalling. Endocr Relat Cancer. 2018. https://doi.org/10.1530/ERC-18-0328. Addis R, et al. Human umbilical endothelial cells (HUVECs) have a sex: characterisation of the phenotype of male and female cells. Biol Sex Differ. 2014;5:18. https://doi.org/10.1186/s13293-014-0018-2. Huxley VH, et al. Sex differences influencing micro- and macrovascular endothelial phenotype in vitro. J Physiol. 2018;596:3929–49. https://doi.org/10.1113/JP276048. Imoukhuede PI, Popel AS. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One. 2012;7:e44791. https://doi.org/10.1371/journal.pone.0044791. Cattaneo MG, et al. Sex-specific eNOS activity and function in human endothelial cells. Scientific Reports. 2017;7:9612. https://doi.org/10.1038/s41598-017-10139-x. Schaaf MB, Houbaert D, Mece O, Agostinis P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ. 2019;26:665–79. https://doi.org/10.1038/s41418-019-0287-8. Boese, AC., Kim, SC., Yin, KJ., Lee, JP. & Hamblin, MH. in American Journal of Physiology - Heart and Circulatory Physiology Vol. 313 H524-H545 (American Physiological Society, 2017). Herrmann JL, et al. in. Journal of Cardiovascular Translational Research. 2010;3:103–13. Kim KH, Young BD, Bender JR. Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol. 2014;389:65–70. https://doi.org/10.1016/j.mce.2014.02.001. Wyckoff MH, et al. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i). J Biol Chem. 2001;276:27071–6. https://doi.org/10.1074/jbc.M100312200. Likhite, N. et al. Loss of estrogen-related receptor alpha facilitates angiogenesis in endothelial cells. Mol Cell Biol 39, doi:10.1128/MCB.00411-18 (2019). Lu Q, et al. ER Alpha rapid signaling is required for estrogen induced proliferation and migration of vascular endothelial cells. PLoS One. 2016;11:e0152807. https://doi.org/10.1371/journal.pone.0152807. Sieveking, D. P. et al. A sex-specific role for androgens in angiogenesis. J Exp Med 207, 345-352, doi:10.1084/jem.20091924 (2010). Fadini, GP. et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arteriosclerosis, thrombosis, and vascular biology 28, 997-1004, doi:10.1161/ATVBAHA.107.159558 (2008). Topel, ML. et al. Sex differences in circulating progenitor cells. J Am Heart Assoc 6, doi:10.1161/JAHA.117.006245 (2017). Ruifrok WP, et al. Estradiol-induced, endothelial progenitor cell-mediated neovascularization in male mice with hind-limb ischemia. Vasc Med. 2009;14:29–36. https://doi.org/10.1177/1358863X08096666. Navarro FC, Herrnreiter C, Nowak L, Watkins SK. Estrogen regulation of T-cell function and its impact on the tumor microenvironment. Gender and the Genome. 2018;2:81–91. https://doi.org/10.1177/2470289718801379. Boudreau N, Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 2003;5:140–6. https://doi.org/10.1186/bcr589. Rudnicki M, et al. Female mice have higher angiogenesis in perigonadal adipose tissue than males in Response to High-Fat Diet. Front Physiol. 2018;9:1452. https://doi.org/10.3389/fphys.2018.01452. Keselman A, Fang X, White PB, Heller NM. Estrogen signaling contributes to sex differences in macrophage polarization during asthma. J Immunol. 2017;199:1573–83. https://doi.org/10.4049/jimmunol.1601975. Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscler Thromb Vasc Biol. 2001;21:6–12. https://doi.org/10.1161/01.atv.21.1.6. Linderholm B, Tavelin B, Grankvist K, Henriksson R. Does vascular endothelial growth factor (VEGF) predict local relapse and survival in radiotherapy-treated node-negative breast cancer? Br J Cancer. 1999;81:727–32. https://doi.org/10.1038/sj.bjc.6690755. Marquez-Garban DC, et al. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer. Steroids. 2011;76:910–20. https://doi.org/10.1016/j.steroids.2011.04.015. Evanson JR, et al. Gender and age differences in growth factor concentrations from platelet-rich plasma in adults. Military Medicine. 2014;179:799–805. https://doi.org/10.7205/milmed-d-13-00336. Xiong G, et al. Men and women differ in the biochemical composition of platelet-rich plasma. Am J Sports Med. 2018;46:409–19. https://doi.org/10.1177/0363546517740845. Ramsey JM, et al. Molecular sex differences in human serum. PLoS One. 2012;7:e51504. https://doi.org/10.1371/journal.pone.0051504. Institute, NC. Angiogenesis Inhibitors, <https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/angiogenesis-inhibitors-fact-sheet> (2018). Ribatti D, Annese T, Ruggieri S, Tamma R, Crivellato E. Limitations of anti-angiogenic treatment of tumors. Transl Oncol. 2019;12:981–6. https://doi.org/10.1016/j.tranon.2019.04.022. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22. https://doi.org/10.1016/j.ccell.2014.10.006. Kim HI, Lim H, Moon A. Sex differences in cancer: epidemiology, genetics and therapy. Biomol Ther (Seoul). 2018;26:335–42. https://doi.org/10.4062/biomolther.2018.103. Brahmer JR, et al. Sex differences in outcome with bevacizumab therapy: analysis of patients with advanced-stage non-small cell lung cancer treated with or without bevacizumab in combination with paclitaxel and carboplatin in the eastern cooperative oncology group trial 459. Journal of Thoracic Oncology. 2011;6:103–8. https://doi.org/10.1097/JTO.0b013e3181fa8efd. Lu JF, et al. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62:779–86. https://doi.org/10.1007/s00280-007-0664-8. Ward EM, et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20-49 years. J Natl Cancer Inst. 2019;111:1279–97. https://doi.org/10.1093/jnci/djz106. Imoukhuede PI, Dokun AO, Annex BH, Popel AS. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol. 2013;304:H1085–93. https://doi.org/10.1152/ajpheart.00514.2012. Imoukhuede PI, Popel AS. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 2014;3:225–44. https://doi.org/10.1002/cam4.188. Chen S, Le T, Harley BAC, Imoukhuede PI. Characterizing glioblastoma heterogeneity via single-cell receptor quantification. Front. Bioeng. Biotechnol. 2018;6:92. https://doi.org/10.3389/fbioe.2018.00092. Chen S, Guo X, Imarenezor O, Imoukhuede PI. Quantification of VEGFRs, NRP1, and PDGFRs on endothelial cells and fibroblasts reveals serum, intra-family ligand, and cross-family ligand regulation. Cellular and Molecular Bioengineering. 2015;8:383–403. https://doi.org/10.1007/s12195-015-0411-x. Weddell JC, Imoukhuede PI. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One. 2014;9:e97271. https://doi.org/10.1371/journal.pone.0097271. Finley SD, Engel-Stefanini MO, Imoukhuede PI, Popel AS. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol. 2011;5:193. https://doi.org/10.1186/1752-0509-5-193. Mac Gabhann F, Popel AS. Systems biology of vascular endothelial growth factors. Microcirculation. 2008;15:715–38. https://doi.org/10.1080/10739680802095964. Finley SD, Chu L-H, Popel AS. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug discovery today. 2015;20:187–97. https://doi.org/10.1016/j.drudis.2014.09.026. Mac Gabhann F, Qutub AA, Annex BH, Popel AS. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip Rev Syst Biol Med. 2010;2:694–707. https://doi.org/10.1002/wsbm.92. Qutub, AA., Mac Gabhann, F., Karagiannis, ED., Vempati, P. & Popel, AS. Multiscale models of angiogenesis. IEEE Eng Med Biol Mag 28, 14-31, doi:10.1109/MEMB.2009.931791 (2009). Vempati P, Popel AS, Mac Gabhann F. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst Biol. 2011;5:59. https://doi.org/10.1186/1752-0509-5-59. Vempati P, Mac Gabhann F, Popel AS. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS One. 2010;5:e11860. https://doi.org/10.1371/journal.pone.0011860. Mac Gabhann, F., Ji, J. W. & Popel, AS. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J Appl Physiol (1985) 102, 722-734, doi:10.1152/japplphysiol.00800.2006 (2007). Liu, G., Qutub, A. A., Vempati, P., Mac Gabhann, F. & Popel, AS. Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8, 6, doi:10.1186/1742-4682-8-6 (2011). Qutub AA, Popel AS. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol. 2009;3:13. https://doi.org/10.1186/1752-0509-3-13. Ji JW, Mac Gabhann F, Popel AS. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am J Physiol Heart Circ Physiol. 2007;293:H3740–9. https://doi.org/10.1152/ajpheart.00009.2007. Weickhardt AJ, et al. Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer. Br J Cancer. 2015;113:37–45. https://doi.org/10.1038/bjc.2015.209. Gail M, Simon R. Testing for qualitative interactions between treatment effects and patient subsets. Biometrics. 1985;41:361–72. Piantadosi S, Gail MH. A comparison of the power of two tests for qualitative interactions. Stat Med. 1993;12:1239–48. Lachenbruch PA. A note on sample size computation for testing interactions. Stat Med. 1988;7:467–9. Demidenko E. Sample size and optimal design for logistic regression with binary interaction. Stat Med. 2008;27:36–46. https://doi.org/10.1002/sim.2980. Schmoor C, Sauerbrei W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med. 2000;19:441–52.